==== Quality measurement system example ====
We send states to a message queue named 'qualityQueue', which stores simple status messages of a quality assurance system. Create a multi-component application that communicates with the message queue through two clients in the following way:
- The first component connects to the sensor placed on the measuring machine and randomly sends **GOOD**, **EXCELLENT**, and **WRONG** messages to the '**qualityQueue**' message queue every second.
- Create a component that reads and collects the '**GOOD**', '**EXCELLENT**', and '**WRONG**' messages from the qualityQueue queue. After receiving 10 identical messages, it sends a message to the '**qualityStatistics**' queue indicating that it has processed 10 messages of a certain quality.
- Create a second component that reads the statistics from the '**qualityStatistics**' queue and prints to the console, for example, '10 'WRONG' messages has been processed'.
flowchart TB
MQ[("RabbitMQ Server\n(qualityQueue, qualityStatistics)")]
Component1["Component 1\n(Sensor Data Sender)"] -->|sends GOOD/EXCELLENT/WRONG| MQ
Component2["Component 2\n(Quality Message Consumer)"] -- collects messages --> MQ
Component2 -->|sends batch of 10 messages| MQ
Component3["Component 3\n(Statistics Consumer)"] -- receives and prints batches --> MQ
subgraph Docker
MQ
end
subgraph Components
Component1
Component2
Component3
end
classDef machine fill:#f9f,stroke:#333,stroke-width:2px;
classDef clients fill:#ccf,stroke:#333,stroke-width:2px;
class Docker machine;
class Component1,Component2,Component3 clients;
Let's try to solve the task with http://docker.iit.uni-miskolc.hu framework.
=== Starting RabbitMQ in Docker ===
To solve the task, it is recommended to start multiple instances (terminals). The first terminal will start the RabbitMQ server. Open a new terminal (node 1) and run the following command:
docker run -it --rm --name rabbitmq -p 5672:5672 -p 15672:15672 rabbitmq:management-alpine
After running the command above, the **RabbitMQ** management console will be accessible on port **15672**, using the credentials //guest/guest//. In the left-side menu, you can find the internal IP address (**10.x.y.z**) of node1, which can be used in the clients and processors.
Create another terminal and execute the following command:
pip install pika
This command installs the pika module, which provides the connection to **RabbitMQ**.
Create the //quality_message_sender.py//:
Use the appropriate IP address in the //init(self):// method.
import pika
import random
import time
class QualitySender:
def __init__(self):
self.connection = pika.BlockingConnection(pika.ConnectionParameters('10.x.y.z'))
self.channel = self.connection.channel()
self.channel.queue_declare(queue='qualityQueue')
def start_sending(self):
qualities = ['GOOD', 'EXCELLENT', 'WRONG']
while True:
quality = random.choice(qualities)
self.channel.basic_publish(exchange='', routing_key='qualityQueue', body=quality)
print(f'Sent quality: {quality}')
time.sleep(1)
def close_connection(self):
self.connection.close()
if __name__ == '__main__':
sender = QualitySender()
try:
sender.start_sending()
except KeyboardInterrupt:
sender.close_connection()
Let's create the //quality_message_consumer.py// file:
(do not forget to create it in an other terminal, and run //pip install pika// and set the proper IP in //pika.ConnectionParameters()// )
import pika
class QualityConsumer:
def __init__(self):
self.connection = pika.BlockingConnection(pika.ConnectionParameters('10.x.y.z'))
self.channel = self.connection.channel()
self.channel.queue_declare(queue='qualityQueue')
self.channel.queue_declare(queue='qualityStatistics')
self.message_count = {'GOOD': 0, 'EXCELLENT': 0, 'WRONG': 0}
def start_consuming(self):
def callback(ch, method, properties, body):
quality = body.decode()
self.message_count[quality] += 1
print(f'Received quality: {quality}')
if self.is_batch_completed():
self.send_statistics()
self.reset_message_count()
self.channel.basic_consume(queue='qualityQueue', on_message_callback=callback, auto_ack=True)
self.channel.start_consuming()
def send_statistics(self):
for quality, count in self.message_count.items():
if count > 0:
message = f'{count} {quality} messages has been processed'
self.channel.basic_publish(exchange='', routing_key='qualityStatistics', body=message)
print(f'Sent statistics: {message}')
def reset_message_count(self):
for quality in self.message_count:
self.message_count[quality] = 0
def is_batch_completed(self):
return sum(self.message_count.values()) >= 10
def close_connection(self):
self.connection.close()
if __name__ == '__main__':
consumer = QualityConsumer()
try:
consumer.start_consuming()
except KeyboardInterrupt:
consumer.close_connection()
The third components prints the statistics. Let's create an other instance (terminal) and create statistics_consumer.py
import pika
# RabbitMQ settings
connection = pika.BlockingConnection(pika.ConnectionParameters('10.x.y.z'))
channel = connection.channel()
channel.queue_declare(queue='qualityStatistics')
def callback(ch, method, properties, body):
message = body.decode()
print('-----------------------------')
print(f'{message}')
ch.basic_ack(delivery_tag=method.delivery_tag)
channel.basic_consume(queue='qualityStatistics', on_message_callback=callback)
print('Waiting for quality statistics...')
channel.start_consuming()