
Learning outcomes:

➢ Python Data Structures, In- and out

Lecture 10

❖ Data Structures are a way of organizing data so that it can be accessed more
efficiently depending upon the situation.

❖ Data Structures are fundamentals of any programming language around
which a program is built.

❖ Python helps to learn the fundamental of these data structures in a simpler
way as compared to other programming languages.

Data Structures

Types of Data Structures in Python

❖Python has implicit support for Data Structures which enable you to store and
access data. These structures are called Built-in data structures.

➢Built-in data structures in Python can be divided into two broad categories:
mutable and immutable. Mutable (from Latin mutabilis, "changeable") data
structures are those which we can modify -- for example, by adding, removing,
or changing their elements. Python has three mutable data structures: lists,
dictionaries, and sets. Immutable data structures, on the other hand, are those
that we cannot modify after their creation. The only basic built-in immutable
data structure in Python is a tuple.

❖Python allows its users to create their own Data Structures (User-Defined
Data Structures) enabling them to have full control over their functionality.
The most prominent Data Structures are Stack, Queue, Tree, Linked List and
so on which are also available to you in other programming languages.

Built-in Data Structures

Lists

• Python Lists are just like the arrays, declared in other languages which is an
ordered collection of data. It is very flexible as the items in a list do not need to be
of the same type.

• Example: Creating Python List:

List1 = ["Geeks", "For", "Geeks"]

print(List1)

✓Output

['Geeks', 'For', 'Geeks']

• List elements can be accessed by the assigned index. In python starting index
of the list, sequence is 0 and the ending index is (if N elements are there) N-1.

• Example: Python List Operations

Creating a List with

➢ the use of multiple values:

✓Input

List2 = [1, 2, 3, "GFG", 2.3]

print("\nList containing multiple values: ")

print(List2)

✓Output

[1, 2, 3, 'GFG', 2.3]

Creating a Multi-Dimensional List

➢ By Nesting a list inside a List:

List3 = [['Geeks', 'For'], ['Geeks']]

print("\nMulti-Dimensional List: ")

print(List3)

✓Output

Multi-Dimensional List:

[['Geeks', 'For'], ['Geeks']]

accessing a element from the list

➢ using positive indexing:

print("Accessing element from the list")

print(List1[0])

print(List1[2])

✓Output

Accessing element from the list

Geeks

Geeks

accessing a element using

➢ using negative indexing

print("Accessing element using negative indexing")

print the last element of list

print(List1[-1])

print the third last element of list

print(List1[-3])

✓Output

Accessing element using negative indexing

Geeks

Geeks

Dictionary

• Python dictionary is like hash tables in any other language with the time
complexity of O(1). It is an unordered collection of data values, used to
store data values like a map, which, unlike other Data Types that hold only a
single value as an element, Dictionary holds the key:value pair. Key-value
is provided in the dictionary to make it more optimized.

• Indexing of Python Dictionary is done with the help of keys. These are of
any hashable type i.e. an object whose can never change like strings,
numbers, tuples, etc. We can create a dictionary by using curly braces ({}).

Example: Python Dictionary Operations

➢ Creating a Dictionary

Dict = {'Name': 'Geeks', 'Number': 5}

print("Creating Dictionary: ")

print(Dict)

✓Output

Creating Dictionary:

{'Name': 'Geeks', 'Number': 5}

➢ accessing a element using key

print("Accessing a element using key:")

print(Dict['Name'])

✓Output

Accessing a element using key:

Geeks

➢ accessing a element using get()

print("Accessing a element using get:")

print(Dict.get('Number'))

✓Output

Accessing a element using get:

5

creation using Dictionary comprehension

myDict = {x: x**2 for x in [1,2,3,4,5]}

print(myDict)

✓Output

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Sets

• Python Set is an unordered collection of data that is mutable and does not
allow any duplicate element. Sets are basically used to include membership
testing and eliminating duplicate entries. The data structure used in this is
Hashing, a popular technique to perform insertion, deletion, and traversal in
O(1) on average.

• If Multiple values are present at the same index position, then the value is
appended to that index position, to form a Linked List. In, Python Sets are
implemented using a dictionary with dummy variables, where key beings
the members set with greater optimizations to the time complexity.

Set Implementation:

Sets with Numerous operations on a single HashTable:

Example: Python Set Operations

➢ Creating a Set with

a mixed type of values

(Having numbers and strings)

Set = set([1, 2, 'Geeks', 4, 'For', 6, 'Geeks'])

print("\nSet with the use of Mixed Values")

print(Set)

✓Output

Set with the use of Mixed Values

{1, 'Geeks', 2, 4, 6, 'For'}

➢ Accessing element using

for loop

print("\nElements of set: ")

for i in Set:

 print(i, end =" ")

print()

Checking the element

using in keyword

print("Geeks" in Set)

✓Output

Elements of set:

1 Geeks 2 4 6 For

True

Tuple

• Python Tuple is a collection of Python objects much like a list but Tuples
are immutable in nature i.e. the elements in the tuple cannot be added or
removed once created. Just like a List, a Tuple can also contain elements of
various types.

• In Python, tuples are created by placing a sequence of values separated by
‘comma’ with or without the use of parentheses for grouping of the data
sequence.

• Note: Tuples can also be created with a single element, but it is a bit tricky.
Having one element in the parentheses is not sufficient, there must be a
trailing ‘comma’ to make it a tuple.

Example: Python Tuple Operations

➢ Creating a Tuple with

▪ The use of Strings

Tuple = ('Geeks', 'For')

print("\nTuple with the use of String: ")

print(Tuple)

✓Output

Tuple with the use of String:

('Geeks', 'For')

➢ Creating a Tuple with

▪ The use of list

list4 = [1, 2, 4, 5, 6]

print("\nTuple using List: ")

Tuple = tuple(list4)

print(Tuple)

✓Output

Tuple using List:

(1, 2, 4, 5, 6)

➢Accessing elements using positive indexing

print("First element of tuple")

print(Tuple[0])

✓Output

First element of tuple

1

➢Accessing elements from last (negative indexing)

print("\nLast element of tuple")

print(Tuple[-1])

print("\nThird last element of tuple")

print(Tuple[-3])

✓Output

Last element of tuple

6

Third last element of tuple

4

Arrays vs. Lists

• Arrays and lists are the same structure with one difference.

• Lists allow heterogeneous data element storage whereas Arrays allow
only homogenous elements to be stored within them.

User-Defined Data Structures

Stack

• Stacks are linear Data Structures which are based on the principle of Last-
In-First-Out (LIFO) where data which is entered last will be the first to get
accessed.

• It is built using the array structure and has operations namely, pushing
(adding) elements, popping (deleting) elements and accessing elements only
from one point in the stack called as the TOP. This TOP is the pointer to the
current position of the stack.

• Stacks are prominently used in applications such as Recursive
Programming, reversing words, undo mechanisms in word editors and so
forth.

https://www.edureka.co/blog/stack-in-python/

Queue

• A queue is also a linear data structure which is based on the principle of
First-In-First-Out (FIFO) where the data entered first will be accessed first.

• It is built using the array structure and has operations which can be
performed from both ends of the Queue, that is, head-tail or front-back.

• Operations such as adding and deleting elements are called En-Queue and
De-Queue and accessing the elements can be performed.

• Queues are used as Network Buffers for traffic congestion management,
used in Operating Systems for Job Scheduling and many more.

https://www.edureka.co/blog/queue-data-structure-in-python/

Trees

• Trees are non-linear Data Structures which have root and nodes. The root is
the node from where the data originates and the nodes are the other data
points that are available to us. The node that precedes is the parent and the
node after is called the child.

• There are levels a tree has to show the depth of information. The last nodes
are called the leaves.

• Trees create a hierarchy which can be used in a lot of real-world
applications such as the HTML pages use trees to distinguish which tag
comes under which block. It is also efficient in searching purposes and
much more.

https://www.edureka.co/blog/what-is-html/

Linked List

• Linked lists are linear Data Structures which are not stored
consequently but are linked with each other using pointers.

• The node of a linked list is composed of data and a pointer called next.
These structures are most widely used in image viewing applications,
music player applications and so forth.

https://www.edureka.co/blog/linked-list-in-python/

Graph

• Graphs are used to store data collection of points called vertices (nodes) and
edges (edges).

• Graphs can be called as the most accurate representation of a real-world
map.

• They are used to find the various cost-to-distance between the various data
points called as the nodes and hence find the least path.

• Many applications such as Google Maps, Uber, and many more use Graphs
to find the least distance and increase profits in the best ways.

HashMaps

• HashMaps are the same as what dictionaries are in Python. They can be
used to implement applications such as phonebooks, populate data
according to the lists and much more.

https://www.edureka.co/blog/dictionary-in-python/

	Slide 1
	Slide 2: Data Structures
	Slide 3: Types of Data Structures in Python
	Slide 4
	Slide 5: Built-in Data Structures
	Slide 6: Lists
	Slide 7
	Slide 8: # Creating a List with
	Slide 9: # Creating a Multi-Dimensional List
	Slide 10: # accessing a element from the list
	Slide 11: # accessing a element using
	Slide 12: Dictionary
	Slide 13: Example: Python Dictionary Operations
	Slide 14: accessing a element using key
	Slide 15: accessing a element using get()
	Slide 16: # creation using Dictionary comprehension
	Slide 17: Sets
	Slide 18: Set Implementation:
	Slide 19: Sets with Numerous operations on a single HashTable:
	Slide 20: Example: Python Set Operations
	Slide 21
	Slide 22: Tuple
	Slide 23: Example: Python Tuple Operations
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Arrays vs. Lists
	Slide 28: User-Defined Data Structures
	Slide 29: Stack
	Slide 30: Queue
	Slide 31: Trees
	Slide 32: Linked List
	Slide 33: Graph
	Slide 34: HashMaps

