
Learning outcomes:

➢ Python language instructions

➢ Branch organization, cycle organization

➢ The concept of title, value, indicator

Lecture 11

Python language instructions

Branch organization, cycle organization

Python language instructions

• An instruction is a command to the computer, a unit of execution.

• Python code in this case is a set of instructions. It can be presented as a
step-by-step recipe.

• Python code is run by an interpreter, a program that executes instructions
strictly, line by line.

Branch organization

• Branching in Python refers to the ability to execute certain statements conditionally based
on the truth value of certain expressions.

• In other words, it's a way to control the flow of your program based on whether certain
conditions are met or not.

• Conditional statements (if, else, and elif) are fundamental programming constructs that
allow you to control the flow of your program based on conditions that you specify. They
provide a way to make decisions in your program and execute different code based on those
decisions.

• Conditional Statements are statements in Python that provide a choice for the control flow
based on a condition. It means that the control flow of the Python program will be decided
based on the outcome of the condition.

Types of Conditional Statement in Python

1. If Conditional Statement in Python

▪ If a simple block of code is to be performed if the condition holds then the if
statement is used. Here the condition mentioned holds then the block of
code runs otherwise not.

▪ Syntax of If Statement:

if condition:

 # Statements to execute if

 # condition is true

if statement example

if 10 > 5:

 print("10 greater than 5")

print("Program ended")

✓Output

10 greater than 5

Program ended

2. If else Conditional Statements in Python

▪ In a conditional if Statement the additional block of code is merged as an
else statement which is performed when if condition is false.

▪ Syntax of Python If-Else:

if (condition):

 # Executes this block if

 # condition is true

else:

 # Executes this block if

 # condition is false

if..else statement example

x = 3

if x == 4:

 print("Yes")

else:

 print("No")

✓Output

No

3. Nested if..else Conditional Statements in Python

▪ Nested if..else means an if-else statement inside another if statement. Or in
simple words first, there is an outer if statement, and inside it another if –
else statement is present and such type of statement is known as nested if
statement.

▪ We can use one if or else if statement inside another if or else if statements.

Nested if..else statement example

letter = "A"

if letter == "B":

 print("letter is B")

else:

 if letter == "C":

 print("letter is C")

 else:

 if letter == "A":

 print("letter is A")

 else:

 print("letter isn't A, B and C")

✓Output

letter is A

4. If-elif-else Conditional Statements in Python

▪ The if statements are executed from the top down.

▪ As soon as one of the conditions controlling the if is true, the statement
associated with that if is executed, and the rest of the ladder is bypassed.

▪ If none of the conditions is true, then the final “else” statement will be
executed.

if-elif statement example

letter = "A"

if letter == "B":

 print("letter is B")

elif letter == "C":

 print("letter is C")

elif letter == "A":

 print("letter is A")

else:

 print("letter isn't A, B or C")

✓ Output

letter is A

5. Ternary Expression Conditional Statements in Python

▪ The Python ternary Expression determines if a condition is true or false and
then returns the appropriate value in accordance with the result. The ternary
Expression is useful in cases where we need to assign a value to a variable
based on a simple condition, and we want to keep our code more concise —
all in just one line of code.

▪ Syntax of Ternary Expression

Syntax: [on_true] if [expression] else [on_false]

expression: conditional_expression | lambda_expr

Python program to demonstrate nested ternary operator

a, b = 10, 20

print ("Both a and b are equal" if a == b else "a is greater than b"

 if a > b else "b is greater than a")

✓Output

b is greater than a

Cycle organization

• Cycle (loop) organization is an instruction that involves repeating a block of
code multiple times as long as some condition is met.

• The main looping structures in Python are for loops and while loops.

Type of Loops

1. For Loop

▪ A for loop in Python is used to iterate over a sequence (list, tuple, set,
dictionary, and string).

▪ Example: The preceding code executes as follows: The variable i is a
placeholder for every item in your iterable object. The loop iterates as many
times as the number of elements and prints the elements serially.

Example of For Loop

iterate through a list

x = ["python", "simplilearn", "tutorial"]

for i in x:

 print(i)

✓Output

python

simplilearn

tutorial

2. While Loop

▪ The while loop is used to execute a set of statements as long as a condition
is true.

▪ Example: The preceding code executes as follows: We assign the value to
variable x as 1. Until the value of x is less than 3, the loop continues and
prints the numbers.

Example of While Loop

while loop

x = 1

while x < 3:

 print(x)

 x = x + 1

✓Output

1

2

3. Nested Loop

▪ If a loop exists inside the body of another loop, it is called a nested loop.

▪ Example: The preceding code executes as follows:

✓The program first encounters the outer loop, performing its first iteration.

✓This first iteration triggers the inner, nested loop, which then runs to
completion.

✓Then the program returns to the top of the outer loop, completing the
second iteration and again triggers the nested loop.

✓The nested loop runs to completion, and the program returns to the top of
the outer loop until the sequence is complete.

Example of Nested Loop

Nested Loop

x = ["simplilearn", "python"]

Num = [1, 2]

for i in x:

 for j in Num :

 print(i, j)

✓Output

simplilearn 1

simplilearn 2

python 1

python 2

The concept of title, value, indicator

The concept of title, value, indicator

• In the context of Python programming, particularly when dealing with
data visualization and analysis, the terms "title," "value," and
"indicator" can be related to various aspects of data representation.

• These concepts can be widely applied across various domains where
data visualization and representation are crucial for analysis, reporting,
and decision-making.

• Let's explore each concept and how they can be used in Python:

1. Title

• The "title" typically refers to the title of a plot, graph, chart, or a section of a report. It provides a brief
description of what the data or visualization represents.

• Example: Setting a Title in a Matplotlib Plot

import matplotlib.pyplot as plt

Data

x = [1, 2, 3, 4, 5]

y = [10, 20, 25, 30, 35]

Create a plot

plt.plot(x, y , marker='o')

Set the title

plt.title("Sample Plot of X vs Y")

Show the plot

plt.show()

2. Value

• "Value" generally refers to the data points or numerical values that are being plotted, analyzed, or displayed. Values can come from
various sources, such as measurements, calculations, or data sets.

• Example: Displaying Values in a Bar Chart

import matplotlib.pyplot as plt

Data

categories = ['A', 'B', 'C', 'D']

values = [10, 20, 15, 25]

Create a bar chart

plt.bar(categories, values)

Add value labels on top of each bar

for i, value in enumerate(values):

 plt.text(i, value + 0.5, str(value), ha='center')

Show the plot

plt.show()

3. Indicator

• An "indicator" is often used in dashboards or reports to provide a visual representation of a
key metric or performance indicator. Indicators can be simple as color-coded symbols,
gauges, or any visual cue that highlights a particular data point's status.

• Example: Creating an Indicator with Plotly

import plotly.graph_objects as go

Create an indicator

fig = go.Figure(go.Indicator(

 mode="gauge+number",

 value=270,

 title={'text': "Speed"},

 gauge={'axis': {'range': [0, 500]}}

))

Show the indicator

fig.show()

	Slide 1
	Slide 2
	Slide 3: Python language instructions
	Slide 4: Branch organization
	Slide 5: Types of Conditional Statement in Python
	Slide 6: # if statement example
	Slide 7
	Slide 8: # if..else statement example
	Slide 9
	Slide 10: # Nested if..else statement example
	Slide 11
	Slide 12: # if-elif statement example
	Slide 13
	Slide 14: # Python program to demonstrate nested ternary operator
	Slide 15: Cycle organization
	Slide 16: Type of Loops
	Slide 17: Example of For Loop
	Slide 18
	Slide 19: Example of While Loop
	Slide 20
	Slide 21: Example of Nested Loop
	Slide 22
	Slide 23: The concept of title, value, indicator
	Slide 24: 1. Title
	Slide 25: 2. Value
	Slide 26: 3. Indicator

