
Learning outcomes:

➢ Introduction to SymPy for symbolic mathematics:

▪ Simulating simple engineering systems (e.g., pendulum, electrical
circuits)

▪ Introduction to OpenCV or similar tools for basic image analysis
in engineering.

Lecture 11

Introduction to SymPy for Symbolic Mathematics

▪ In the realm of mathematics and computer science, symbolic
computation is an area that deals with the manipulation of
mathematical symbols and expressions.

▪Unlike numerical computation, which deals with specific numbers,
symbolic computation allows for the manipulation of algebraic
expressions, equations, and other mathematical objects in a symbolic
form.

▪One of the most powerful libraries available for symbolic computation
in Python is SymPy.

What is SymPy?

▪ SymPy is an open-source Python library for symbolic mathematics. It
aims to become a full-featured computer algebra system (CAS) while
keeping the code as simple as possible to be comprehensible and
easily extensible.

▪ SymPy is written entirely in Python and can be used in both interactive
and programmatic environments. Its primary goal is to provide a
robust and efficient symbolic computation library that integrates
seamlessly with the Python ecosystem.

Basic Symbolic Computation

❑ Defining Symbols

▪ The foundation of symbolic computation is the ability to define and
manipulate symbols. In SymPy, we use the symbols function to define
symbolic variables:

from sympy import symbols

x, y, z = symbols('x y z’)

▪ Now, x, y, and z are symbolic variables that we can use in mathematical
expressions.

Basic Operations

❑ With symbols defined, we can perform basic arithmetic operations
just like we would with numerical variables:

from sympy import symbols

x, y = symbols('x y')

Addition
expr = x + y
print(expr) # Output: x + y

Subtraction
expr = x - y
print(expr) # Output: x - y

Multiplication
expr = x * y
print(expr) # Output: x*y

Division
expr = x / y
print(expr) # Output: x/y

Power
expr = x**2 + y**2
print(expr) # Output: x**2 + y**2

Algebraic Manipulations

▪ Expanding and Factoring Expressions

SymPy provides powerful tools for algebraic manipulations, such as
expanding and factoring expressions.

from sympy import expand, factor

expr = (x + y)**2

Expand the expression
expanded_expr = expand(expr)
print(expanded_expr) # Output: x**2 + 2*x*y + y**2

Factor the expression
factored_expr = factor(expanded_expr)
print(factored_expr) # Output: (x + y)**2

▪ Simplifying Expressions

SymPy can simplify complex mathematical expressions to their simplest
form using the simplify function:

from sympy import simplify

expr = (x**2 + 2*x*y + y**2) / (x + y)

Simplify the expression
simplified_expr = simplify(expr)
print(simplified_expr) # Output: x + y

Solving Equations Symbolically

▪ One of the most powerful features of SymPy is its ability to solve equations
symbolically.

➢Solving Algebraic Equations

To solve algebraic equations, we use the solve function. For example, let's solve
the equation x²-4=0:

from sympy import solve

Define the equation
equation = x**2 - 4

Solve the equation
solutions = solve(equation, x)
print(solutions) # Output: [-2, 2]

➢Solving Systems of Equations

SymPy can also solve systems of equations. For example, let’s solve the
system:

Define the equations
equation1 = 2*x + y - 1
equation2 = x - y - 3

Solve the system of equations
solutions = solve((equation1, equation2), (x, y))
print(solutions) # Output: {x: 4/3, y: -5/3}

Applications in Simplifying Complex Mathematical Expressions

▪ SymPy’s ability to simplify complex mathematical expressions is invaluable in
various fields, including physics, engineering, and computer science. Let’s
explore a few examples.

➢Simplifying Trigonometric Expressions

Trigonometric expressions can often be simplified using SymPy’s trigsimp
function:

from sympy import trigsimp, sin, cos

expr = sin(x)**2 + cos(x)**2

Simplify the trigonometric expression
simplified_expr = trigsimp(expr)
print(simplified_expr) # Output: 1

➢Simplifying Logarithmic Expressions

Logarithmic expressions can be simplified using the logcombine
function

from sympy import log, logcombine

expr = log(x) + log(y)

Simplify the logarithmic expression
simplified_expr = logcombine(expr)
print(simplified_expr) # Output: log(x) + log(y)

➢Simplifying Exponential Expressions

Exponential expressions can be simplified using the simplify function:

from sympy import exp, simplify

expr = exp(x) * exp(y)

Simplify the exponential expression
simplified_expr = simplify(expr)
print(simplified_expr) # Output: exp(x + y)

Advanced Features of SymPy

▪ SymPy provides robust support for calculus, including differentiation and
integration.

➢Differentiation

To compute the derivative of an expression, use the diff function:

from sympy import diff

expr = x**3 + 3*x**2 + 3*x + 1

Compute the derivative
derivative = diff(expr, x)
print(derivative) # Output: 3*x**2 + 6*x + 3

➢Integration

To compute the integral of an expression, use the integrate function:

from sympy import integrate

Compute the indefinite integral
indefinite_integral = integrate(expr, x)
print(indefinite_integral) # Output: x**4/4 + x**3 + 3*x**2/2 + x

Compute the definite integral
definite_integral = integrate(expr, (x, 0, 1))
print(definite_integral) # Output: 15/4

➢Limits

SymPy can also compute limits using the limit function:

from sympy import limit

expr = (sin(x) / x)

Compute the limit as x approaches 0
limit_value = limit(expr, x, 0)
print(limit_value) # Output: 1

Solving Differential Equations

SymPy provides tools for solving ordinary differential equations
(ODEs):

from sympy import Function, dsolve, Eq

f = Function('f')
eq = Eq(f(x).diff(x, x) + 9*f(x), 1)

Solve the differential equation
solution = dsolve(eq)
print(solution) # Output: Eq(f(x), C1*sin(3*x) + C2*cos(3*x) + 1/9)

▪Using SymPy, a Python library for symbolic mathematics, we can
simulate engineering systems by deriving and solving differential
equations symbolically.

▪ SymPy excels at analytical solutions, making it ideal for studying
system behavior and generating exact solutions.

Simulating simple engineering systems (e.g., pendulum,
electrical circuits)

SymPy Code for Solving the Pendulum Equation

from sympy import symbols, Function, Eq, dsolve, sin, simplify

Define variables and functions

t = symbols('t')

theta = Function('theta')(t)

g, L = symbols('g L')

Define the linearized pendulum equation

pendulum_eq = Eq(theta.diff(t, 2) + (g / L) * theta, 0)

Solve the differential equation

solution = dsolve(pendulum_eq, theta)

simplified_solution = simplify(solution)

Display the solution

print("Pendulum Solution:")

print(simplified_solution)

✓Output:

Pendulum Solution:

Eq(theta(t), C1*exp(-t*sqrt(-g/L)) + C2*exp(t*sqrt(-g/L)))

Visualizing the Solutions

▪ SymPy provides integration with Matplotlib to plot the results.

➢Example Visualization of the Pendulum Solution

import numpy as np

import matplotlib.pyplot as plt

import sympy as sp

Define symbolic variables

t = sp.Symbol('t') # Time

g = sp.Symbol('g') # Gravity

L = sp.Symbol('L') # Length of pendulum

Define the analytical solution (Example: Small-angle approximation)

theta_0 = 0.2 # Initial angle (radians)

omega = sp.sqrt(g / L) # Natural frequency

simplified_solution = theta_0 * sp.cos(omega * t) # Solution for small angles

Substitute parameters

params = {g: 9.81, L: 1} # Gravity = 9.81 m/s², Length = 1m

sol_expr = simplified_solution.subs(params)

Convert symbolic solution to numerical function

theta_func = sp.lambdify(t, sol_expr, modules=['numpy'])

Generate time values

time = np.linspace(0, 10, 1000) # 10 seconds, 1000 points

theta_vals = theta_func(time)

Plot the results

plt.plot(time, theta_vals, label="Pendulum Motion")

plt.title("Pendulum Simulation (SymPy)")

plt.xlabel("Time (s)")

plt.ylabel("Theta (rad)")

plt.grid()

plt.legend()

plt.show()

SymPy Code for Solving the RC Circuit Equation

from sympy import symbols, Function, Eq, dsolve, simplify

Define variables and functions

t = symbols('t')

V_C = Function('V_C')(t)

R, C, V_in = symbols('R C V_in')

Define the RC circuit equation

rc_eq = Eq(V_C.diff(t), (V_in - V_C) / (R * C))

Solve the differential equation

rc_solution = dsolve(rc_eq, V_C)

simplified_rc_solution = simplify(rc_solution)

Display the solution

print("RC Circuit Solution:")

print(simplified_rc_solution)

✓ Output:

RC Circuit Solution:

Eq(V_C(t), C1*exp(-t/(C*R)) + V_in)

Introduction to OpenCV or similar tools for basic image
analysis in engineering

Computer Vision (CV)

▪ Computer Vision is a branch of Computer Science, which aims to build up
intelligent systems that can understand the content in images as they are perceived
by humans. The data may be presented in different modalities such as sequential
(video) images from multiple sensors (cameras) or multidimensional data from a
biomedical camera, and so on. It is the discipline that integrates the methods of
acquiring, processing, analyzing and understanding large-scale images from the
real world.

▪ Computer Vision is one aspect of Artificial Intelligence and Image Processing,
which generally aims to simulate intelligent human capabilities. In computer
Vision concept, object recognition is one of the fundamental tasks, which depends
on how these objects are defined, whether in the form of images or video
sequences, and human beings are able to recognize many entities, even if these
objects, which are images, vary greatly in size and lighting.

Some examples of Computer Vision applications:

▪Any application that can recognize objects or humans in an image;

▪Automatic control applications (industrial robots, vehicles);

▪Object construction models (industrial inspection, medical image
analysis);

▪Applications make it possible to track a moving object.

Computer vision tasks:

▪ There are many computer vision tasks including Image Recognition,
Semantic Segmentation, Image Retrieval, Image Restoration, Object
Recognition, Video Tracking, and so on.

Image Recognition

▪ Traditionally, Computer Vision is about deciding whether or not the image
contains an object.

▪ This task can be solved simply with little effort by human beings, but a
certain activity is still not solved effectively and finely by computer in its
general state.

▪ The only way to solve this issue is to find the best solutions to match certain
features (edges, shapes, etc), and in some cases only, often with specific
lighting conditions, a background and a certain position for the camera.

Types of recognition:

A - Identification: Predefined objects are often identified from different
viewpoints of the camera in their different locations.

B - Selection: Define a unique identifier in the shape. For example:
identify a person's face or identify the specific type of a person or car.

C - Examination: Image data is treated for a specific object. For
example: check for the presence of diseased cells in medical form,
check if a car is present on a highway.

Computer Vision Systems

❑ Computer vision systems are very diverse and are divided into large
and sophisticated systems that perform general and complete tasks as
well as small systems that perform specific and simple ones. Most
computer vision systems mainly include the following:

➢Collecting images

▪ The image is generated by using one or more image sensors. These
include many digital camera sensors, distance sensors, radars, and
ultrasonic cameras.

➢Pre-processing operations

▪Before applying the computer vision algorithm in order to extract
valuable information, it is necessary to perform prior data operations
to ensure that the data are consistent with the algorithm's specific
hypotheses. Some examples of these processes include:

1. Select the image resolution to confirm that its coordinate system is
correct.

2. Reduce the interference to ensure that the sensor does not provide
inaccurate information.

3. Increase the variance in order to ensure that the required information
will be available.

➢Features extraction

▪Visual data features are extracted at different levels of abstraction from
data raw. These benchmarks are categorized into:

1. Global features such as color and shape.

2. Local features such as edges and points. More complex features
related to colors and patterns can be obtained.

➢Segmentation

▪All zones of the image can be recognized as important locations for
subsequent operations. For example: select a set of key points, divide
one or more images that contain the region of interest. 3.5. High-level
processing operations At this stage, the input data consists of a small
set of data, such as a set of points or a portion of the image that is
suspected to contain the interest object. The other operations are:

1. Ensure that the collected data are consistent with the hypotheses of
the intended application.

2. Evaluate the transaction values assigned to the request, such as
steering or shape size.

3. Classify the recognized objects into several classes

Python libraries for Computer Vision

▪ The main toolkits for image processing in python are OpenCV, scikit-
image and Pillow.

▪ The most general Python libraries (Numpy and Scipy) also provide
some image processing tools.

▪All these libraries can easily dialog with each other due to the common
use of Numpy arrays to store images.

▪A grayscale image is usually stored in a 2-dimensional integer or real
value Numpy array with H rows and W columns (W=width,H=height).
A color image is stored in a 3-dimensional Numpy array (H, W, 3).

Installing and Importing the OpenCV Image Preprocessing
Package

▪OpenCV in deep learning is an extremely important important aspect
of many Machine Learning algorithms. OpenCV basics is an open-
source library (package) for computer vision, machine learning, and
image processing applications that run on the CPU exclusively. It
works with many different programming languages, including Python.
It can be imported with single line command as being depicted below.

✓pip install opencv-python

▪A package in Python is a collection of modules that contain pre-
written programmes. These packages allow you to import modules
separately or in their whole. Importing the package is as simple as
calling the “cv2” module as seen below:

✓import cv2 as cv

Processing images with OpenCV

▪ Reading images in Python

To read an image, we have the imread () function. It should be mentioned that
previously, we have moved to the directory that contains the image.

image = cv2.imread ('image.jpg')

▪ As an alternative, it is also possible to pass a value for a flag, which is the second
argument

✓cv2.IMREAD_COLOR: For loading a color image by overlooking existing
transparency; cv2.IMREAD_GRAYSCALE: For loading a grayscale image;
cv2.IMREAD_UNCHANGED: For loading an image that includes an alpha
channel It is possible to use integers 1, 0 or -1:

image = cv2. imread ('image.jpg', 0)

oNote that sending an invalid image path does not result in any errors.

Displaying images in Python

▪ The cv2.imshow () function enables to display an image in a frame that can
be adjusted to its size. The first argument is the name of the frame and the
second one is the image.

✓image = cv2. imread ('image.jpg')

✓cv2.imshow('Images', image)

• Note that we have two frames at once as we have not attempted to title them
in the same way. cv2.destroyAllWindows () function is another function
that destroys all the frames that we have already created.
cv2.destroyWindow () also destroys a specific frame

Creating images in Python

▪ To do this, there is the cv2.imwrite ()function. The first argument is
the file name and the second one is the image to be saved.

✓cv2.imwrite('image.png', image)

This will store the grayscale image named "image.png" in the current
location.

Displaying images using Matplotlib

▪By using Matplotlib (opens new window)library, we can display that
image.

import matplotlib.pyplot as plt

plt.imshow(image, cmap = "gray", interpolation = "bilinear")

plt.xticks([]), pl.ticks ([])

(([],), ([],))

plt.display ()

Core operations on images

❑Let's now look at the basic operations applicable on the image.

import cv2

image = cv2.imread (' image.jpg')

y, x = 100,50

▪Reading of color values at positions y, x:

(b, g, r) = image[y,x]

▪Region of interest at (x, y) whose dimensions are 100x100:

roi = image[y:y+100,x:x+100]

cv2.imshow ('image', image)

cv2.imshow('ROI', roi)

▪ Pixelization of the new color:

roi[:,:]= (55,44,87)

cv2.imshow('New image', image)

Practical examples

Reading an Image

▪ First of all, we will import cv2 module and then read the input image using
cv2’s imread() method. Then extract the height and width of the image.

Importing the OpenCV library

import cv2

Reading the image using imread() function

image = cv2.imread('image.jpg')

Creating GUI window to display an image on screen

cv2.imshow("My first image", image)

cv2.waitKey(0)

✓Output:

Extracting the height and width of an image

h, w = image.shape[:2]

Displaying the height and width

print("Height = {}, Width = {}".format(h, w))

✓Output:

Height = 735, Width = 1100

Extracting the BGR (Blue-Green-Red)Values of a Pixel

▪ Now we will focus on extracting the RGB values of an individual pixel.
OpenCV arranges the channels in BGR order. So the 0th value will
correspond to the Blue pixel and not the Red.

Extracting RGB values.

Here we have randomly chosen a pixel

by passing in 100, 100 for height and width.

(B, G, R) = image[100, 100]

Displaying the pixel values

print("R = {}, G = {}, B = {}".format(R, G, B))

✓Output:

R = 239, G = 200, B = 157

We can also pass the channel to extract

the value for a specific channel

B = image[100, 100, 0]

print("B = {}".format(B))

✓Output:

B = 157

Extracting the Region of Interest (ROI)

▪ Sometimes we want to extract a particular part or region of an image.
This can be done by slicing the pixels of the image

We will calculate the region of interest

by slicing the pixels of the image

roi = image[100 : 500, 200 : 700]

cv2.imshow("ROI", roi)

cv2.waitKey(0)

✓Output:

Resizing the Image

▪We can also resize an image in Python using resize() function of the
cv2 module and pass the input image and resize pixel value.

resize() function takes 2 parameters,

the image and the dimensions

resize = cv2.resize(image, (500, 500))

cv2.imshow("Resized Image", resize)

cv2.waitKey(0)

✓Output:

• The problem with this approach is that the aspect ratio of the image is not maintained.
So we need to do some extra work in order to maintain a proper aspect ratio.

• This ensures that the image does not get distorted when resized.

Calculating the ratio

ratio = 800 / w

Creating a tuple containing width and height

dim = (800, int(h * ratio))

Resizing the image

resize_aspect = cv2.resize(image, dim)

cv2.imshow("Resized Image", resize_aspect)

cv2.waitKey(0)

✓Output:

Drawing a Rectangle

▪We can draw a rectangle on the image using rectangle() method. It
takes in 5 arguments:

➢Image

➢Top-left corner co-ordinates

➢Bottom-right corner co-ordinates

➢Color (in BGR format)

➢Line width

We are copying the original image,

as it is an in-place operation.

output = image.copy()

Using the rectangle() function to create a rectangle.

rectangle = cv2.rectangle(output, (1500, 900), (600, 400), (255, 0, 0), 2)

cv2.imshow("Drawing a Rectangle", rectangle)

cv2.waitKey(0)

✓Output:

Displaying text

▪ It is also an in-place operation that can be done using the putText() method
of OpenCV module. It takes in 7 arguments:

➢Image

➢Text to be displayed

➢Bottom-left corner co-ordinates, from where the text should start

➢Font

➢Font size

➢Color (BGR format)

➢Line width

Copying the original image

output = image.copy()

Adding the text using putText() function

text = cv2.putText(output, 'OpenCV Demo', (500, 550),
cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 2)

cv2.imshow("Displaying text", text)

cv2.waitKey(0)

✓Output:

	Slide 1
	Slide 2: Introduction to SymPy for Symbolic Mathematics
	Slide 3: What is SymPy?
	Slide 4: Basic Symbolic Computation
	Slide 5: Basic Operations
	Slide 6
	Slide 7: Algebraic Manipulations
	Slide 8
	Slide 9: Solving Equations Symbolically
	Slide 10
	Slide 11: Applications in Simplifying Complex Mathematical Expressions
	Slide 12
	Slide 13
	Slide 14: Advanced Features of SymPy
	Slide 15
	Slide 16
	Slide 17: Solving Differential Equations
	Slide 18: Simulating simple engineering systems (e.g., pendulum, electrical circuits)
	Slide 19: SymPy Code for Solving the Pendulum Equation
	Slide 20
	Slide 21: Visualizing the Solutions
	Slide 22
	Slide 23
	Slide 24: SymPy Code for Solving the RC Circuit Equation
	Slide 25: Introduction to OpenCV or similar tools for basic image analysis in engineering
	Slide 26: Computer Vision (CV)
	Slide 27
	Slide 28: Some examples of Computer Vision applications:
	Slide 29: Computer vision tasks:
	Slide 30: Image Recognition
	Slide 31: Types of recognition:
	Slide 32: Computer Vision Systems
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Python libraries for Computer Vision
	Slide 37: Installing and Importing the OpenCV Image Preprocessing Package
	Slide 38
	Slide 39: Processing images with OpenCV
	Slide 40: Displaying images in Python
	Slide 41: Creating images in Python
	Slide 42: Displaying images using Matplotlib
	Slide 43: Core operations on images
	Slide 44
	Slide 45
	Slide 46: Reading an Image
	Slide 47
	Slide 48
	Slide 49: Extracting the BGR (Blue-Green-Red)Values of a Pixel
	Slide 50
	Slide 51: Extracting the Region of Interest (ROI)
	Slide 52
	Slide 53: Resizing the Image
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Drawing a Rectangle
	Slide 58
	Slide 59
	Slide 60: Displaying text
	Slide 61
	Slide 62

