
Learning outcomes:

➢ Excel Visual Basic for Applications (VBA) programming

Lecture 12

Introduction

▪Microsoft Excel is a powerful tool that most of us have used to
manage data, perform calculations, and create charts.

▪But did you know that you can take Excel to the next level by utilizing
Visual Basic for Applications (VBA)? VBA is a programming
language integrated into Excel that allows you to automate tasks, build
custom functions, and create interactive user interfaces.

▪ This blog, we’ll introduce you to Excel VBA programming for
beginners and demonstrate how it can enhance your productivity and
efficiency.

Why VBA?

▪ Visual Basic for Applications is a programming language developed by
Microsoft, primarily used within their Office suite of applications such as
Excel, Word, and Access. VBA empowers users to automate tasks, enhance
productivity, and extend the functionality of these applications. Whether
you are a seasoned developer or someone new to the world of coding, VBA
offers an accessible and rewarding path to achieving your goals.

▪ VBA stands for Visual Basic for Applications. It's a programming language
that enables you to control just about everything in Excel. You'll learn how
to create Macros that can be run from things like a button on a spreadsheet,
the Excel Ribbon - in fact, lots of places. Learning Excel VBA will enable
you to do a lot more with the software than you can via the normal
spreadsheet view.

Understanding Visual Basic for Applications (VBA)

▪VBA is an event-driven tool. You can use it to tell the computer to
initiate an action or string of actions by typing commands into an
editing module to build custom macroinstructions (macros).

▪A macro is essentially a sequence of characters that inputs results in
another sequence of characters (its output). This accomplishes specific
computing tasks. You don't have to purchase the VBA software
because VBA is the version of Visual Basic that ships with Microsoft
Office.

VBA in Excel

▪All Office suite programs share common programming languages and
each is capable of integrating VBA code to enhance the program. VBA
has been a natural fit with Excel more so than with other Office suite
programs because of the repetitive nature of spreadsheets, data
analytics, and organizing data.

▪ The root of the relationship between VBA and Excel is often tied to
the use of macros. You can use VBA to run a macro in Excel but you
can use it for non-macro activities as well.

How to Access VBA in Excel

▪ Simply press Alt + F11 to access VBA in Excel.4 Your existing Excel
workbook will remain running but a new window will appear for
Microsoft Visual Basic for Applications. The top left of the VBA
window will show the current projects. The InvestopediaProject file is
ready to receive VBA code in this example:

▪ The window displays the properties of the selected project at the
bottom left. Properties are listed as projects or workbooks are selected.
These properties are listed alphabetically by default although they can
be sorted by category.

▪A new window appears when you double-click on a project on the top
left. There's no information in this area but you'll see two dropdowns
that say "(General)" and "(Declarations)." VBA code is directly
entered into this coding window.

▪Here's an example of a VBA code that's been entered:

▪Many important buttons and tools appear on the toolbar. The items
highlighted in yellow are the run, break, and reset toggles for the VBA
code. The run button executes the code. The break button pauses the
activity of the code. The reset stops the execution of the code and
brings the process back to the starting position of the code.

Important VBA Terms

❑ Module

A module is where Excel stores the VBA code. Information regarding the
modules within a spreadsheet can be found in Project Explorer, one of the
sections of the Visual Basic Editor. All modules can be saved within a
modules folder. Modules are sometimes referred to as standard modules.

❑ Objects

Most code is used to manipulate objects in VBA. Objects are items such as
workbooks, worksheets, cells, cell ranges, or cell fonts. Objects are often
selected or referred to as part of the code when you're coding in VBA. The
code can use the "ActiveCell" language to manipulate the object currently
selected in the spreadsheet. You can also create a process that executes when
a bar chart is edited.

https://www.investopedia.com/terms/b/barchart.asp

❑ Procedures

The procedure is the part of a computer program that performs a
specific task. It's the block of code that starts with a declaration and
finishes with an end declaration. There are two types of procedures in
VBA. Sub procedures form an action in Excel and begin with the text
"Sub." Function procedures carry out calculations and return a value.

❑ Statement

A statement is an instruction that can be broken into two types. First, a
declaration statement is used to state something such as defining a
constant or a variable value. Second, executable statements designate
code that specifies what a certain action is.

❑ Variables

Variables are storage locations for defined items. They hold specific
values that may change as VBA scripts are performed. The variable
"FirstName" may not contain any value. but it can be assigned the
FirstName variable and given the value "Jo" after the user inputs their
name. Variables in coding can be different depending on the situation,
similar to how variable costs can change over time.

❑ Logical Operators

Logical operators are the functions that allow for greater analytical and
processing capabilities. They're bits of code that allow a computer to
understand and compare items. VBA can analyze whether the user's
name is "Jo." The program can analyze the input and perform a logical
evaluation using logical operators such as 'if, then', 'true', and 'false.'

https://www.investopedia.com/ask/answers/032515/what-difference-between-variable-cost-and-fixed-cost-economics.asp

VBA code

▪VBA code consists of procedures (subroutines or functions) that
perform specific tasks. A procedure can be initiated by a user or
executed automatically when certain events occur. Understanding the
structure of a simple VBA subroutine:

Sub MyFirstMacro()
' Your code goes here
End Sub

Subroutine (Macro)

Sub HelloWorld()

 MsgBox "Hello, World!"

End Sub

Variables and Data Types:

Sub ExampleVariables()

 Dim num As Integer

 Dim text As String

 num = 42

 text = "Excel VBA"

 MsgBox text & " Number: " & num

End Sub

Conditional Statements

Sub ExampleIf()

 Dim score As Integer

 score = 85

 If score >= 90 Then

 MsgBox "Grade: A"

 ElseIf score >= 80 Then

 MsgBox "Grade: B"

 Else

 MsgBox "Grade: C"

 End If

End Sub

Loops

Sub ExampleLoop()

 Dim i As Integer

 For i = 1 To 10

 Cells(i, 1).Value = "Row " & i

 Next i

End Sub

Reading and Writing to Cells:

Sub ReadWriteCells()

 ' Write to a cell

 Range("A1").Value = "Hello"

 ' Read from a cell

 MsgBox Range("A1").Value

End Sub

Working with Ranges

Sub ManipulateRange()

 Dim rng As Range

 Set rng = Range("A1:A10")

 rng.Value = "Test"

End Sub

Interacting with Worksheets

Sub WorksheetExample()

 Dim ws As Worksheet

 Set ws = ThisWorkbook.Sheets("Sheet1")

 ws.Range("A1").Value = "VBA Rocks!"

End Sub

Recording Macros

▪One of the easiest ways to get started with VBA is by recording
macros. Excel allows you to record your actions and generate VBA
code that replicates those actions. To record a macro, go to the “View”
tab, click on “Macros,” and then select “Record Macro.”

▪Once you finish your actions, stop the recording. Excel will generate
VBA code that reflects your actions. This recorded code can be used as
a starting point for further customization and automation.

Automating Repetitive Tasks

▪ One of the primary reasons for using VBA is to automate repetitive tasks. For
instance, if you find yourself frequently formatting data in a specific way or
performing calculations on the same set of data, VBA can save you significant
time and effort.

▪ Let’s take an example of automating data formatting:

Sub FormatData()
' Select the range of data
Range("A1:D10").Select

' Apply bold font to the headers
Selection.Font.Bold = True

' Autofit columns for better visibility
Columns.AutoFit
End Sub

Creating Custom Functions

▪ Excel VBA allows you to create custom functions that can be used in your
worksheets just like built-in functions. Custom functions are written using
VBA and can take arguments and return values.

▪ Here’s an example of a simple custom function that calculates the area of a
rectangle:

Function CalculateRectangleArea(Length As Double, Width As Double) As
Double
CalculateRectangleArea = Length * Width
End Function

➢After defining this function, you can use it in your worksheet:

=CalculateRectangleArea(5, 10)

▪Here is an example of a simple custom function that adds two
numbers:

Function AddNumbers(num1 As Double, num2 As Double) As Double

 AddNumbers = num1 + num2

End Function

➢After defining this function, you can use it in your worksheet:

= AddNumbers(5, 10)

Handling User Input

▪VBA also enables you to create user interfaces within Excel to gather
input from users and perform actions based on that input. You can
create custom dialog boxes, input boxes, and message boxes to interact
with users.

▪ For example, let’s create an input box to get the user’s name and
display a personalized greeting:

Sub PersonalizedGreeting()
Dim userName As String
userName = InputBox("Please enter your name:")
MsgBox "Hello, " & userName & "! Welcome to our Excel blog!"
End Sub

Error Handling

▪ Like any programming language, VBA allows you to implement error
handling to gracefully deal with unexpected issues that may arise during
code execution. By using error handling, you can display custom error
messages and prevent Excel from crashing due to runtime errors.

Sub DivideNumbers()
On Error GoTo ErrorHandler
Dim num1 As Double, num2 As Double, result As Double
num1 = InputBox("Enter the first number:")
num2 = InputBox("Enter the second number:")
result = num1 / num2
MsgBox "The result is: " & result
Exit Sub
ErrorHandler:
MsgBox "An error occurred: " & Err.Description
End Sub

Sub ErrorHandlingExample()

 On Error GoTo ErrorHandler

 Dim result As Double

 result = 100 / 0 ' Will cause an error

 Exit Sub

ErrorHandler:

 MsgBox "An error occurred: " & Err.Description

End Sub

	Slide 1
	Slide 2: Introduction
	Slide 3: Why VBA?
	Slide 4: Understanding Visual Basic for Applications (VBA)
	Slide 5: VBA in Excel
	Slide 6: How to Access VBA in Excel
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Important VBA Terms
	Slide 12
	Slide 13
	Slide 14: VBA code
	Slide 15: Subroutine (Macro)
	Slide 16: Variables and Data Types:
	Slide 17: Conditional Statements
	Slide 18: Loops
	Slide 19: Reading and Writing to Cells:
	Slide 20: Working with Ranges
	Slide 21: Interacting with Worksheets
	Slide 22: Recording Macros
	Slide 23: Automating Repetitive Tasks
	Slide 24: Creating Custom Functions
	Slide 25
	Slide 26: Handling User Input
	Slide 27: Error Handling
	Slide 28

