
Learning outcomes:

➢ Numerical Calculations with NumPy:

▪ Solving linear equations-Introduction to matrix operations

Lecture 2

Linear Algebra

▪ Linear algebra is an important branch of mathematics that deals with
the study of linear equations and their representations in terms of
matrices and vectors.

▪NumPy is a popular Python library that provides a wide range of
functions for performing linear algebra operations.

Solving Systems of Linear Equations Using NumPy

• Systems of linear equations are fundamental in various fields of science
and engineering. NumPy, a powerful numerical computing library in
Python, provides efficient methods to solve these systems.

• Example:

• Consider the system of equations:

• Using NumPy, we can solve this system as follows:

import numpy as np

A = np.array([[2, 3], [1, -4]])
B = np.array([8, -2])

Solving the system
solution = np.linalg.solve(A, B)
print("Solution:", solution)

✓Output:

Solution: [2.36363636 1.09090909]

Matrices

❑ A special subtype of a two-dimensional NumPy array is a matrix. A
matrix is like an array except that matrix multiplication (and
exponentiation) replaces element-by-element multiplication. Matrices
are generated by the matrix function, which may also be
abbreviated mat:

❑ Employing matrices enables us to execute linear algebra, which
allows us to execute numerous operations on many numbers
effectively using matrix operations in Python NumPy.

Construct a Matrix in NumPy

❑ np.array() function:

▪ To Construct a Matrix in NumPy, we may use the np.array() function.

Syntax:

numpy.array(object, dtype=None, **kwargs)

▪ In this function, we supply the Python object to be converted into a
matrix (in our example, a list of lists) as well as the object's data type.
It returns the NumPy array on which we will conduct matrix
operations.

▪ To generate the aforementioned array in NumPy, use the np.array()
method as shown below.

Using np.array() function

import numpy as np

Array = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

print(Array)

✓Output:

[[1 2 3]

 [4 5 6]

 [7 8 9]]

❑ np.matrix() Function:

▪ To Construct a Matrix in NumPy, We may also use the np.matrix()
Function

Syntax:

numpy.matrix(data, dtype=None, **kwargs)

▪ To transform our data into a NumPy array, we merely supply data and its
data type to this method.

▪ Let us now use this approach to produce the aforementioned array for
conducting matrix operations in python numpy.

Using np.matrix() function

import numpy as np

Array = np.matrix([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

print(Array)

✓Output:

[[1 2 3]

 [4 5 6]

 [7 8 9]]

✓Despite the fact that it was effective in producing matrices, it is no longer
suggested to use this class, including for linear algebra.

✓Instead, utilize approach 1, which makes use of the np.array() function. It
is quite likely that it will be removed from future NumPy versions.

✓Thus we can observe how the mathematical representation of a matrix is
expressed in NumPy in both cases. Each row is surrounded by square
brackets, and the entire array is surrounded by a set of brackets.

Operations on Matrices in NumPy

❑ For performing matrix operations in Python NumPy, there are several
operations including:

➢Addition of matrices

➢Subtraction of matrices

➢Multiply or divide a matrix by a scalar

➢Finding the maximum value in the matrix

➢Finding the minimum value in the matrix

➢Sum of all values of a Numpy matrix

➢Transpose a matrix

➢Rank of a NumPy matrix

➢Determinant of a square NumPy matrix.

➢Inverse a matrix

➢Convert a matrix to a list

➢Vector norm

➢Matrix Trace

➢LU Decomposition

➢QR Decomposition

➢SVD (Singular Value Decomposition)

➢Direct Solution of Linear Equations

➢Least Squares Fitting

➢Condition Number

Addition of Matrices

• The '+' operator is one of the most implemented matrix operations in Python
NumPy can be used to execute addition on matrices. Consider the following
example to better understand this.

Addition of Matrices

import numpy as np

Array1 = np.matrix([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Array2 = np.matrix([[10, 11, 12],

 [13, 14, 15],

 [16, 17, 18]])

print("Output : \n",Array1+ Array2)

✓Output:

 [[11 13 15]

 [17 19 21]

 [23 25 27]]

Subtraction of Matrices

• Subtraction is analogous to addition. We just need to switch from the '+' operator
to the '-' operator. Consider the following example to better understand this.

Subtraction of matrices

import numpy as np

Array1 = np.matrix([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Array2 = np.matrix([[10, 11, 12],

 [13, 14, 15],

 [16, 17, 18]])

print("Output : \n",Array2 - Array1)

✓Output :

 [[9 9 9]

 [9 9 9]

 [9 9 9]]

NumPy matrix multiplication methods#

❑ There are three main ways to perform NumPy matrix multiplication:

▪ np.dot(array a, array b): returns the scalar or dot product of two arrays.

▪ np.matmul(array a, array b): returns the matrix product of two arrays.

▪ np.multiply(array a, array b): returns the element-wise matrix
multiplication of two arrays.

Scalar multiplication or dot product with numpy.dot#

▪ Scalar multiplication is a simple form of matrix multiplication. A
scalar is just a number, like 1, 2, or 3. In scalar multiplication, we
multiply a scalar by a matrix. Each element in the matrix is multiplied
by the scalar, which makes the output the same shape as the original
matrix.

▪With scalar multiplication, the order doesn’t matter. We’ll get the same
result whether we multiply the scalar by the matrix or the matrix by
the scalar.

▪ Let’s take a look at an example:

import numpy as np

A = 5

B = [[6, 7],

 [8, 9]]

print(np.dot(A,B))

✓Output :

[[30 35]

 [40 45]]

▪When it comes to the product between two matrices, it may be done in
two ways: scalar/dot product or cross product. Let us attempt to
comprehend each of them thoroughly.

▪ Scalar/Dot Product

✓The inner product accepts two equal-sized vectors and produces a single
integer (scalar). This is computed by multiplying the matching items in
each vector and totaling the results. Vectors are one-dimensional NumPy
arrays in NumPy.

✓We may obtain the inner product either using np.inner() or np.dot(). Both
provide the same outcomes.

▪ Consider the following illustration:

Scalar/ Dot product

import numpy as np

Array1 = np.array([1, 2, 3])

Array2 = np.array([4, 5, 6])

print("Dot product: \n",np.dot(Array2 , Array1))

print("Inner product: \n",np.inner(Array2 , Array1))

✓Output:

Dot product :

 32

Inner product :

 32

Matrix product with numpy.matmul#

▪ The matmul() function gives us the matrix product of two 2-d arrays.
With this method, we can’t use scalar values for our input. If one of
our arguments is a 1-d array, the function converts it into a NumPy
matrix by appending a 1 to its dimension. This is removed after the
multiplication is done.

▪ If one of our arguments is greater than 2-d, the function treats it as a
stack of matrices in the last two indexes. The matmul() method is great
for times when we’re unsure of what the dimensions of our matrices
will be.

▪ Let’s look at some examples:

✓Multiplying a 2-d array by another 2-d array

import numpy as np

A = [[2, 4],

 [6, 8]]

B = [[1, 3],

 [5, 7]]

print(np.matmul(A,B))

✓Output:

[[22 34]

 [46 74]]

Element-wise matrix multiplication with numpy.multiply#

▪ The numpy.multiply() method takes two matrices as inputs and
performs element-wise multiplication on them.

▪ Element-wise multiplication, or Hadamard Product, multiples every
element of the first NumPy matrix by the equivalent element in the
second matrix. When using this method, both matrices should have the
same dimensions.

▪ Let’s look at an example:

import numpy as np

A = np.array([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]])

B = np.array([[1, 2, 3, 4, 5], [5, 4, 3, 2, 1]])

print(np.multiply(A,B))

✓Output:

[[1 6 15 28 45]

 [10 16 18 16 10]]

▪ A matrix's division by a scalar is similar to a scalar's division by a scalar.

Divide a matrix by a scalar

import numpy as np

Array = np.matrix([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

DivideByScalar = Array / 5

print("Output of division between an Array and scalar : \n", DivideByScalar)

The output of division between an Array and scalar :

 [[0.2 0.4 0.6]

 [0.8 1. 1.2]

 [1.4 1.6 1.8]]

Divide a Matrix by a Scalar

Finding Maximum Value in the Matrix

▪ The np.amax() method may be used to obtain the maximum value along a certain axis. Its
parameters are an array and an axis along which the greatest value is to be determined.
Let's understand this with the help of an example:

Finding the maximum value in the matrix

import numpy as np

Array = np.matrix([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

print("Max value in the matrix : ", np.amax(Array))

print("Max value in the matrix along axis 0 : ", np.amax(Array, axis=0))

✓Output:

Max value in the matrix: 9

Max value in the matrix along axis 0 : [[7 8 9]]

Finding Minimum Value in the Matrix

▪ It is very similar to the prior operation. The np.amin() function may be
used to find the smallest value along a given axis.

▪ Its parameters are an array and an axis along which the least value is to
be calculated. The amin() and amax() functions are considered to be
very important for matrix operations in Python NumPy.

▪ Let us attempt to understand this with the assistance of an example:

Finding the minimum value in the matrix

import numpy as np

Array = np.matrix([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

print("Minimum value in the matrix : ", np.amin(Array))

print("Minimum value in the matrix along axis 0 : ", np.amin(Array, axis=0))

✓Output:

Minimum value in the matrix: 1

Minimum value in the matrix along axis 0 : [[1 2 3]]

Sum of All Values of a NumPy Matrix

▪ The np.sum() function will be used to determine the sum of all the
elements in the NumPy array.

▪ This function accepts a ndarray object as input, which represents the
original matrix whose elements we wish to sum.

▪ It provides a 0-dimensional array or a scalar number that is the sum of
all the array items. Consider the following scenario:

Sum of all values of a NumPy matrix

import numpy as np

Array = np.matrix([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

print("Sum of all values in the matrix : ", np.sum(Array))

✓Output:

Sum of all values in the matrix: 45

Transpose a Matrix

▪ A matrix's transposition is determined by swapping its rows and columns.

▪ To acquire the transpose, we can use the 'np.transpose()' function, NumPy
'ndarray.transpose()' function, or 'ndarray.T', a specific method that does not
need parenthesis.

▪ Let us try to grasp this with an example.

Transpose a matrix

import numpy as np

Array = np.matrix([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

print("Array = ")

print(Array)

print("\nWith np.transpose(Array) function")

print(np.transpose(Array))

print("\nWith ndarray.transpose() method")

print(Array.transpose())

print("\nWith ndarray.T short form")

print(Array.T)

✓Output:

Array =

[[1 2 3]

 [4 5 6]

 [7 8 9]]

With np.transpose(Array) function

[[1 4 7]

 [2 5 8]

 [3 6 9]]

With ndarray.transpose() method

[[1 4 7]

 [2 5 8]

 [3 6 9]]

With ndarray.T short form

[[1 4 7]

 [2 5 8]

 [3 6 9]]

✓You must have observed that all of the methods produced the same results.

Rank of a NumPy Matrix

▪ The dimensions of the vector space formed by a matrix's columns or rows are its
rank. In other terms, it is the greatest number of linearly independent column
vectors or row vectors.

▪ The matrix_rank() function from the NumPy linalg package may be used to
determine the rank of a matrix.

▪ Consider the following example:

Rank of a NumPy matrix

import numpy as np

Array = np.matrix([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

print("Array = ")

print(Array)

print("\nRank:", np.linalg.matrix_rank(Array))

✓Output:

Array =

[[1 2 3]

 [4 5 6]

 [7 8 9]]

Rank: 2

Determinant of a Square NumPy Matrix

▪ The determinant of a square matrix may be determined using the
NumPy linalg package's det() function.

▪ If the determinant is 0, the matrix cannot be inverted. In algebra, this is
referred to as a singular matrix.

▪Otherwise, if the determinant is not zero, the square matrix is
invertible and is said to be non-singular in algebraic terms. Consider
the following example, in which we will examine the determinant of a
matrix.

Determinant of a square NumPy matrix

import numpy as np

Array1 = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

print("Array1 = ")

print(Array1)

print("\nDeterminant:", np.linalg.det(Array1))

Array2 = np.array([[2, 2, 1],

 [1, 3, 1],

 [1, 2, 2]])

print("Array2 = ")

print(Array2)

print("\nDeterminant:", np.linalg.det(Array2))

✓Output:

Array1 =

[[1 2 3]

 [4 5 6]

 [7 8 9]]

Determinant: 0.0

Array2 =

[[2 2 1]

 [1 3 1]

 [1 2 2]]

Determinant: 4.999999999999999

How to Inverse a Matrix using Numpy?

▪As we saw in the last section, a square matrix can be either single or
non-singular. Thus, if the matrix is non-singular, we compute its true
inverse; otherwise, we compute its pseudo inverse.

▪ True Inverse

✓The inv() method of the NumPy linalg package may be used to get the
true inverse of a square matrix. Consider the following example :

True Inverse of NumPy Matrix

import numpy as np

Array = np.array([[2, 2, 1],

 [1, 3, 1],

 [1, 2, 2]])

print("Array = ")

print(Array)

print("\nDeterminant:", np.linalg.det(Array))

print("\nInverse of Array = ")

print(np.linalg.inv(Array))

✓Output:

Array =

[[2 2 1]

 [1 3 1]

 [1 2 2]]

Determinant: 4.999999999999999

Inverse of Array =

[[0.8 -0.4 -0.2]

 [-0.2 0.6 -0.2]

 [-0.2 -0.4 0.8]]

✓We should get an error if we try to calculate the true inverse of a singular matrix.
For example:

Code:

import numpy as np

Array = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

print("Array = ")

print(Array)

print("\nDeterminant:", np.linalg.det(Array))

print("\nInverse of Array = ")

print(np.linalg.inv(Array))

✓Output:

Array =

[[1 2 3]

 [4 5 6]

 [7 8 9]]

Determinant: 0.0

Inverse of Array =

LinAlgError Traceback (most recent call last)

<ipython-input-58-39a460124c92> in <module>()

 7 print("\nDeterminant:", np.linalg.det(Array))

 8 print("\nInverse of Array = ")

----> 9 print(np.linalg.inv(Array))

<__array_function__ internals> in inv(*args, **kwargs)

1 frames

/usr/local/lib/python3.7/dist-packages/numpy/linalg/linalg.py in
_raise_linalgerror_singular(err, flag)

 86

 87 def _raise_linalgerror_singular(err, flag):

---> 88 raise LinAlgError("Singular matrix")

 89

 90 def _raise_linalgerror_nonposdef(err, flag):

LinAlgError: Singular matrix

Pseudo Inverse

▪ The pseudo-inverse may be generated even for singular matrices using the numpy linalg
package's pinv() function. For example:

Pseudo Inverse of NumPy Matrix

import numpy as np

Array = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

print("Array = ")

print(Array)

print("\nDeterminant:", np.linalg.det(Array))

print("\nInverse of Array = ")

print(np.linalg.pinv(Array))

✓Output:

Array =

[[1 2 3]

 [4 5 6]

 [7 8 9]]

Determinant: 0.0

Inverse of Array =

[[-6.38888889e-01 -1.66666667e-01 3.05555556e-01]

 [-5.55555556e-02 3.78742005e-17 5.55555556e-02]

 [5.27777778e-01 1.66666667e-01 -1.94444444e-01]]

How to Convert a Matrix to a List?

▪ To transform the array into a list, we may use the NumPy ndarray
tolist() method.

▪ If the array has more than one dimension, a stacked list is produced. A
list containing the array items is returned for a one-dimensional array.

▪ The tolist() method takes no arguments. It's a straightforward method
for transforming an array into a list format. Consider the following
instance:

Convert a NumPy matrix to a list

import numpy as np

Array = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

print("Array = ")

print(Array)

print("\nlist :")

print(Array.tolist())

✓Output:

Array =

[[1 2 3]

 [4 5 6]

 [7 8 9]]

list :

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Vector Norm using NumPy

▪ A vector's norm is a measurement of its distance to the origin in vector space. To
obtain a vector norm, we employ the Numpy Python library method
numpy.linalg.norm(). Consider the following example to better understand it.

Vector norm of NumPy matrix

import numpy as np

Array = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

print("Array = ")

print(Array)

print("\nVector Norm:", np.linalg.norm(Array))

✓Output:

Array =

[[1 2 3]

[4 5 6]

[7 8 9]]

Vector Norm: 16.881943016134134

Matrix Trace

▪ The trace is the sum of the diagonal elements. It only applies to square
matrices. We get a single number as the trace.

Define a square matrix

A = np.array([[1, 2], [3, 4]])

Compute the trace of the matrix

trace_A = np.trace(A)

print("Trace of the Matrix:", trace_A)

✓Output:

Trace of the Matrix: 5

LU Decomposition

▪ LU decomposition breaks a matrix into two parts. One part is a lower triangular matrix (L).
The other part is an upper triangular matrix (U). It helps solve linear least squares problems
and find eigenvalues.

import numpy as np

from scipy.linalg import lu

Define a matrix

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

LU Decomposition

P, L, U = lu(A)

Display results

print("LU Decomposition:")

print("P matrix:\n", P)

print("L matrix:\n", L)

print("U matrix:\n", U)

✓Output:

LU Decomposition:

P matrix:

[[0. 1. 0.]

[0. 0. 1.]

[1. 0. 0.]]

L matrix:

[[1. 0. 0.]

[0.14285714 1. 0.]

[0.57142857 0.5 1.]]

U matrix:

[[7.00000000e+00 8.00000000e+00 9.00000000e+00]

[0.00000000e+00 8.57142857e-01 1.71428571e+00]

[0.00000000e+00 0.00000000e+00 -1.58603289e-16]]

QR Decomposition

▪ QR decomposition divides a matrix into two parts. One part is an orthogonal
matrix (Q). The other part is an upper triangular matrix (R). It helps solve linear
least squares problems and find eigenvalues.

import numpy as np

from scipy.linalg import qr

Define a matrix

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

QR Decomposition

Q, R = qr(A)

Display results

print("QR Decomposition:")

print("Q matrix:\n", Q)

print("R matrix:\n", R)

✓Output:

QR Decomposition:

Q matrix:

[[-0.12309149 0.90453403 0.40824829]

[-0.49236596 0.30151134 -0.81649658]

[-0.86164044 -0.30151134 0.40824829]]

R matrix:

[[-8.12403840e+00 -9.60113630e+00 -1.10782342e+01]

[0.00000000e+00 9.04534034e-01 1.80906807e+00]

[0.00000000e+00 0.00000000e+00 -1.11164740e-15]]

SVD (Singular Value Decomposition)

▪ SVD decomposes a matrix into three matrices: U, Σ, and V*. U and V* are orthogonal
matrices. Σ is a diagonal matrix. It is useful in many applications like data reduction and
solving linear systems.

import numpy as np

from scipy.linalg import svd

Define a matrix

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

Singular Value Decomposition

U, s, Vh = svd(A)

Display results

print("SVD Decomposition:")

print("U matrix:\n", U)

print("Singular values:\n", s)

print("Vh matrix:\n", Vh)

✓Output:

SVD Decomposition:

U matrix:

[[-0.21483724 0.88723069 0.40824829]

[-0.52058739 0.24964395 -0.81649658]

[-0.82633754 -0.38794278 0.40824829]]

Singular values:

[1.68481034e+01 1.06836951e+00 1.40266540e-16]

Vh matrix:

[[-0.47967118 -0.57236779 -0.66506441]

[-0.77669099 -0.07568647 0.62531805]

[0.40824829 -0.81649658 0.40824829]]

Direct Solution of Linear Equations

▪ Find the values of variables that satisfy equations in a system. Each
equation represents a straight line. The solution is where these lines meet.

Define matrix A and vector B

A = np.array([[3, 1], [1, 2]])

B = np.array([9, 8])

Solve the system of linear equations Ax = B

x = np.linalg.solve(A, B)

print("Solution to Ax = B:", x)

✓Output:

Solution to Ax = B: [2. 3.]

Least Squares Fitting

▪ The least squares fitting finds the best match for data points. It lowers the
squared differences between actual and predicted values.

Define matrix A and vector B

A = np.array([[1, 1], [1, 2], [1, 3]])

B = np.array([1, 2, 2])

Solve the linear least-squares problem

x, residuals, rank, s = np.linalg.lstsq(A, B, rcond=None)

print("Least Squares Solution:", x)

print("Residuals:", residuals)

print("Rank of the matrix:", rank)

print("Singular values:", s)

✓Output:

Least Squares Solution: [0.66666667 0.5]

Residuals: [0.16666667]

Rank of the matrix: 2

Singular values: [4.07914333 0.60049122]

Condition Number

▪ The condition number of a matrix measures sensitivity to input changes. A
high condition number means the solution could be unstable.

Define a matrix

A = np.array([[1, 2], [3, 4]])

Compute the condition number of the matrix

condition_number = np.linalg.cond(A)

print("Condition Number:", condition_number)

✓Output:

Condition Number: 14.933034373659265

	Slide 1
	Slide 2: Linear Algebra
	Slide 3: Solving Systems of Linear Equations Using NumPy
	Slide 4
	Slide 5: Matrices
	Slide 6: Construct a Matrix in NumPy
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Operations on Matrices in NumPy
	Slide 12
	Slide 13: Addition of Matrices
	Slide 14
	Slide 15: Subtraction of Matrices
	Slide 16
	Slide 17: NumPy matrix multiplication methods#
	Slide 18: Scalar multiplication or dot product with numpy.dot#
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Matrix product with numpy.matmul#
	Slide 23
	Slide 24: Element-wise matrix multiplication with numpy.multiply#
	Slide 25
	Slide 26: Divide a Matrix by a Scalar
	Slide 27: Finding Maximum Value in the Matrix
	Slide 28: Finding Minimum Value in the Matrix
	Slide 29
	Slide 30: Sum of All Values of a NumPy Matrix
	Slide 31
	Slide 32: Transpose a Matrix
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Rank of a NumPy Matrix
	Slide 37
	Slide 38: Determinant of a Square NumPy Matrix
	Slide 39
	Slide 40
	Slide 41: How to Inverse a Matrix using Numpy?
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Pseudo Inverse
	Slide 48
	Slide 49: How to Convert a Matrix to a List?
	Slide 50
	Slide 51
	Slide 52: Vector Norm using NumPy
	Slide 53
	Slide 54: Matrix Trace
	Slide 55: LU Decomposition
	Slide 56
	Slide 57: QR Decomposition
	Slide 58
	Slide 59: SVD (Singular Value Decomposition)
	Slide 60
	Slide 61: Direct Solution of Linear Equations
	Slide 62: Least Squares Fitting
	Slide 63
	Slide 64: Condition Number

