
Learning outcomes:

➢ Numerical Calculations with NumPy:

▪ Numerical differentiation and integration

Lecture 4

Numerical differentiation

❑ Numerical differentiation is the process of finding the numerical
value of a derivative of a given function at a given point.

❑ Principles and rules of differentiation

❖The process of finding derivatives of a function is known as
differentiation. Several principles and rules govern the differentiation
of functions. They allow us to differentiate various types of functions
with ease.

Here are some key principles and rules:

1. Power rule: The power rule states that if f(x) = x^n, where n is a constant,
then the derivative f'(x) is given by f'(x) = n * x^(n-1).

2. Constant rule: The derivative of a constant function is zero. If f(x) = c,
where c is a constant, then f'(x) = 0.

3. Sum and difference rule: For functions f(x) and g(x), the derivative of their
sum or difference is the sum or difference of their derivatives. If f(x) and g(x)
are differentiable functions, then (f(x) ± g(x))' = f'(x) ± g'(x).

4. Product rule: The product rule allows us to differentiate the product of two
functions. If f(x) and g(x) are differentiable functions, then the derivative of
their product, f(x) * g(x), is given by (f(x) * g(x))' = f'(x) * g(x) + f(x) *
g'(x).

5. Quotient rule: The quotient rule enables us to differentiate the quotient of
two functions. If f(x) and g(x) are differentiable functions and g(x) ≠ 0, then
the derivative of their quotient, f(x) / g(x), is given by [(f'(x) * g(x)) - (f(x) *
g'(x))] / [g(x)]^2.

6. Chain rule: The chain rule allows us to differentiate composite functions.
If y = f(g(x)), where both f and g are differentiable functions, then the
derivative of y with respect to x can be calculated as dy/dx = (dy/dg) *
(dg/dx), where dy/dg represents the derivative of y with respect to g, and
dg/dx represents the derivative of g with respect to x.

✓Understanding these principles and rules provides a solid foundation for
effectively calculating derivatives and applying them to various functions.
They serve as building blocks for more complex derivative calculations
and enable us to explore the intricacies of mathematical functions in a
systematic manner.

Importance of calculating derivatives

▪Derivatives enable us to determine the slope of a curve at any specific
point. By examining the slope, we can discern whether a function is
increasing or decreasing, identify its maximum or minimum points,
and analyze its concavity.

▪ Such information is crucial for understanding the dynamics of physical
systems, modeling real-world phenomena, optimizing processes, and
making predictions in various fields. Python provides a versatile
platform for performing derivative calculations.

Uses of derivatives

❑ The ability to calculate derivatives has far-reaching implications across
numerous disciplines.

▪ In physics and engineering, derivatives are essential for analyzing motion,
determining velocities and accelerations, and designing efficient systems.

▪ In economics and finance, derivatives aid in understanding the behavior of
markets, optimizing investment strategies, and valuing financial
instruments.

▪Derivatives are fundamental in fields such as biology, chemistry, and
medicine, where they help model rates of reactions, growth patterns, and
physiological processes.

Derivative Functions in Python

▪ In the realm of mathematics and science, derivatives hold immense significance
as they allow us to understand the rate of change of a function at any given
point. Using a versatile tool like Python can help us leverage this mathematical
model to map real-world data.

▪ Put simply, taking a Python derivative measures how a function responds to
infinitesimally small changes in its input. It provides valuable insights into the
behavior, trends, and characteristics of mathematical functions.

▪ If we have a function f(x), the derivative of that function at point x can be
calculated as the limit of the difference quotient as h approaches zero:

➢f'(a) = lim(h -> 0) [(f(a+b) - f(a))/h]

▪However, computing derivatives can be a time−consuming and
error−prone process when done by hand.

▪ Luckily, numerical computing libraries like NumPy can make this
process much easier, enabling us to calculate derivatives quickly and
accurately.

▪ So, we'll delve into the world of numerical differentiation and explore
how to use NumPy's gradient function to compute the derivative of
one−dimensional and multi−dimensional functions.

❑ Step 1: Define the Function

▪ The first step is to define the function you want to take the derivative of.

▪ Let's say we want to find the derivative of the function f(x) = x^2.

▪We can define this function in NumPy using the following code:

 import numpy as np

 def f(x):

 return x**2

Overview of how to compute derivatives using NumPy

❑ Step 2: Define the Domain

▪ The next step is to define the domain of the function. In other words,
you need to specify the values of x that you want to compute the
derivative at.

▪ For example, let's say you want to compute the derivative of f(x) = x^2
at x = 2.

▪You can define this domain using the following code:

 x = 2

❑ Step 3: Compute the Derivative

▪ Once we have established the function and domain, NumPy's gradient function
comes into play to calculate the derivative.

▪ You can call function np.gradient to find the derivative of function f(x) = x2.

➢The first argument is an array of function values, the second defines the spacing
Δx for the evaluation. Here pass it as an array of x values, the differences will be
calculated automatically.

▪ The beauty of the gradient function is its simplicity, requiring only two
arguments: the function we wish to derive and the values of x where we want to
compute the derivative.

▪ Let's take a closer look at how to utilize this function:

 derivative = np.gradient(f(x), x)

▪ In this case, the gradient function will compute the derivative of f(x) = x^2
at x = 2. The output of the function will be a single value representing the
value of the derivative at that point.

▪But what if we want to compute the derivative of a function over a range of
values? We can easily do an updation in our code to do that. Let's say we
want to compute the derivative of f(x) = x^2 over the range x = [0, 1, 2, 3].

▪We can do that by updating our code as follows:

x = np.array([0, 1, 2, 3])

derivative = np.gradient(f(x), x)

▪ In this case, the gradient function will compute the derivative of f(x) = x^2
at each point in the domain and return an array representing the values of the
derivative at each point.

❑ Multi−dimensional Derivatives

▪Another useful feature of the gradient function in NumPy is its ability to
compute partial derivatives of multi−dimensional functions.

▪ This means that you can find the rate of change of a function with respect
to each of its variables separately.

▪ To compute partial derivatives, all you need to do is define the function in
terms of multiple variables and provide a list of values for each variable.

▪NumPy's gradient function will then return an array of partial derivatives
for each variable at each point in the domain.

➢Let's say we want to compute the partial derivatives of the function f(x, y) = x^2
+ y^2. We can define this function in NumPy as follows:

def f(x, y):

 return x**2 + y**2

➢We can then define the domain as x = [1, 2, 3] and y = [4, 5, 6] using the
following code:

x = np.array([1, 2, 3])

y = np.array([4, 5, 6])

dx, dy = np.gradient(f(x, y), x, y)

✓The output of this function will be two arrays representing the values of the
partial derivatives with respect to x and y at each point in the domain.

Numerical methods for calculating derivatives

▪Numerical differentiation methods provide an approximation of the
derivative by computing the slope of a function based on a finite
difference. These methods are particularly useful when an analytical
expression for the function is not available or when dealing with
complex functions.

▪Here, we will explore the difference quotient method and four
commonly used numerical differentiation techniques: forward
difference, central difference, the Newton-raphson method, and the
five-point stencil method.

Difference quotient

▪ The difference quotient method is a fundamental approach to
numerical differentiation. It approximates the derivative of a function
by calculating the slope between two nearby points. Given a function
f(x), the difference quotient is defined as:

 f'(x) ≈ (f(x + h) - f(x)) / h

▪Here, h is a small step size that determines the distance between the
two points. By choosing a small enough h, we can obtain an
approximation of the derivative at a specific point.

Forward difference

▪ The forward difference method approximates the derivative using the
slope between two points, where the second point lies slightly ahead of
the first. It can be expressed as:

 f'(x) ≈ (f(x + h) - f(x)) / h

▪ This method provides a simple and straightforward way to estimate the
derivative, but it introduces some error due to the asymmetry of the
difference.

Central difference

▪ The central difference method addresses the asymmetry issue of the forward
difference method by considering the slopes on both sides of the point of
interest. It calculates the derivative using the slopes between two points,
where one lies slightly ahead and the other lies slightly behind the point.

▪ The formula for the central difference method is:

 f'(x) ≈ (f(x + h) - f(x - h)) / (2 * h)

▪ By averaging the slopes from both directions, the central difference method
yields a more accurate estimation of the derivative.

▪ Forward and Central difference.

Example: Forward and Central difference

def forward_difference(f, x, h=1e-5):
 return (f(x + h) - f(x)) / h

def central_difference(f, x, h=1e-5):
 return (f(x + h) - f(x - h)) / (2 * h)

Function to differentiate
f = lambda x: x**2

Point at which to differentiate
x = 1

forward_diff = forward_difference(f, x)
central_diff = central_difference(f, x)

print("Forward Difference Result:", forward_diff)
print("Central Difference Result:", central_diff)

✓Output:

Forward Difference Result: 2.00001000001393

Central Difference Result: 2.000000000002

Root-Finding Algorithms: Newton-Raphson Method

▪ The Newton-Raphson method is an iterative root-finding algorithm for
continuous and differentiable functions.

▪ Formula

Example: Root-Finding Algorithms: Newton-Raphson Method

def newton_raphson(f, df, x0, tol=1e-5, max_iter=100):

 x = x0

 for _ in range(max_iter):

 x_new = x - f(x) / df(x)

 if abs(x_new - x) < tol:

 return x_new

 x = x_new

 raise ValueError("Convergence not achieved")

Function whose root is to be found

f = lambda x: x**2 - 2

Derivative of the function

df = lambda x: 2*x

Initial guess

x0 = 1

root = newton_raphson(f, df, x0)

print("Root found:", root)

✓ Output:

Root found: 1.4142135623746899

Five-point stencil method

▪ The five-point stencil method further improves the accuracy of the
derivative approximation by incorporating additional neighboring points. It
employs a weighted combination of the function values at five points: two
on each side of the point of interest and the point itself.

▪ The formula for the five-point stencil method is:

 f'(x) ≈ (-f(x + 2h) + 8f(x + h) - 8f(x - h) + f(x - 2h)) / (12 * h)

▪ By utilizing a larger number of function values, the five-point stencil
method reduces the error and provides a more precise estimate of the
derivative.

Numerical integration

Implementing Numerical Integration

❑ Numerical integration is used to approximate the definite integral of a function when
an analytical solution is difficult or impossible. We will discuss two common numerical
integration methods: the trapezoidal rule and Simpson’s rule.

▪ Trapezoidal Rule

➢The trapezoidal rule approximates the area under the curve as a series of trapezoids.

Example: Trapezoidal Rule

import numpy as np

def trapezoidal_rule(f, a, b, n):
 x = np.linspace(a, b, n+1)
 y = f(x)
 dx = (b - a) / n
 integral = (dx / 2) * np.sum(y[:-1] + y[1:])
 return integral

Function to integrate
f = lambda x: x**2

Integration limits
a, b = 0, 1

Number of intervals
n = 100

result = trapezoidal_rule(f, a, b, n)
print("Trapezoidal Rule Result:", result)

✓Output:

Trapezoidal Rule Result: 0.3333499999999999

NumPy trapz()

➢The trapz() function computes the definite integral of a given array using the
trapezoidal rule. It approximates the area under the curve defined by the input
array using a series of trapezoids.

➢The syntax of trapz() is:

numpy.trapz(y, x = None, dx = 1.0, axis = -1)

➢The trapz() function takes following arguments:

• y - input array containing the y-coordinates of the curve

• x (optional) - input array containing the x-coordinates of the curve

• dx (optional) - the spacing between the x-coordinates

• axis (optional) - the axis along which the integration is performed

➢The numpy.trapz() function returns the approximate definite integral of the
input array using the trapezoidal rule.

▪ Example 1

import numpy as np

create an array of y-coordinates

y = np.array([1, 2, 3, 4, 5])

compute the definite integral using numpy.trapz()

area = np.trapz(y)

print(area)

✓Output:

12.0

Compute Definite Integral Using np.trapz()

▪ Example 2

import numpy as np

create an array of y-coordinates

y = np.array([2, 5, 7, 3, 6, 9, 1])

compute the definite integral using numpy.trapz()

area = np.trapz(y)

print("Area under the curve:", area)

✓Output:

Area under the curve: 31.5

▪ In the above examples, we have the y array representing the y-
coordinates of a curve.

▪ The np.trapz() function is used to calculate the definite integral of the
curve, approximating the area under the curve using the trapezoidal
rule.

▪ The resulting area is stored in the area variable and then printed.

Use of x and dx Argument in trapz()

▪Example 3

import numpy as np

create an array of y-coordinates

y = np.array([1, 2, 3, 4, 5])

create an array of x-coordinates

x = np.array([0, 1, 2, 3, 4])

specify the spacing between x-coordinates

dx = 0.5

compute the definite integral using numpy.trapz() with optional arguments

area = np.trapz(y, x=x, dx=dx)

print("Area under the curve:", area)

✓Output:

Area under the curve: 12.0

✓Here, the x array is provided to specify the x-coordinates, and the dx
argument is used to specify the spacing between the x-coordinates.

✓By providing x and dx argument, we can compute the definite integral using
non-equally spaced x-coordinates and a specific spacing between the x-
coordinates.

▪Example 4: trapz() With 2-D Array

➢The axis argument defines how we can compute definite integrals of
elements in a 2-D array.

✓If axis = None, the array is flattened and the definite integral of the
flattened array is computed.

✓If axis = 0, the definite integral is calculated column-wise.

✓If axis = 1, the definite integral is calculated row-wise.

Let's see an example.

import numpy as np

create a 2-D array

array1 = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

calculate the definite integral of the flattened array

result1 = np.trapz(array1.flatten())

print('Definite integral of the flattened array:', result1)

calculate the definite integral column-wise (axis=0)

result2 = np.trapz(array1, axis=0)

print('\nDefinite integrals column-wise (axis=0):')

print(result2)

calculate the definite integral row-wise (axis=1)

result3 = np.trapz(array1, axis=1)

print('\nDefinite integrals row-wise (axis=1):')

print(result3)

✓Output:

Definite integral of the flattened array: 40.0

Definite integrals column-wise (axis=0):

[8. 10. 12.]

Definite integrals row-wise (axis=1):

[4. 10. 16.]

▪ Simpson’s Rule

➢Simpson’s rule provides a more accurate approximation by using
parabolic segments.

https://www.geeksforgeeks.org/simpsons-rule-formula/amp/

Example: Simpson’s Rule

def simpsons_rule(f, a, b, n):
 if n % 2:
 n += 1 # n must be even
 x = np.linspace(a, b, n+1)
 y = f(x)
 dx = (b - a) / n
 integral = (dx / 3) * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
 return integral

result = simpsons_rule(f, a, b, n)
print("Simpson's Rule Result:", result)

✓Output:

Simpson's Rule Result: 0.3333333333333333

	Slide 1
	Slide 2: Numerical differentiation
	Slide 3: Here are some key principles and rules:
	Slide 4
	Slide 5
	Slide 6: Importance of calculating derivatives
	Slide 7: Uses of derivatives
	Slide 8: Derivative Functions in Python
	Slide 9
	Slide 10: Overview of how to compute derivatives using NumPy
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Numerical methods for calculating derivatives
	Slide 17: Difference quotient
	Slide 18: Forward difference
	Slide 19: Central difference
	Slide 20
	Slide 21: Example: Forward and Central difference
	Slide 22: Root-Finding Algorithms: Newton-Raphson Method
	Slide 23: Example: Root-Finding Algorithms: Newton-Raphson Method
	Slide 24: Five-point stencil method
	Slide 25
	Slide 26: Implementing Numerical Integration
	Slide 27: Example: Trapezoidal Rule
	Slide 28: NumPy trapz()
	Slide 29: Compute Definite Integral Using np.trapz()
	Slide 30
	Slide 31
	Slide 32: Use of x and dx Argument in trapz()
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Example: Simpson’s Rule

