
Learning outcomes:

➢ Data Visualization for Engineering:

▪ Using Matplotlib and Seaborn for plotting

Lecture 5

Data Visualization

❑ Data visualization is an easier way of presenting the data, however
complex it is, to analyze trends and relationships amongst variables
with the help of pictorial representation.

❑ The following are the advantages of Data Visualization:

➢Easy Interpretation and Understanding

➢Highlights good and bad performing areas

➢Explores the relationship between data points

➢Identifies data patterns even for larger data points

❑ While building visualization, it is always a good practice to keep
some below mentioned points in mind.

➢Ensure appropriate usage of shapes, colors, and size while building
visualization

➢Plots/graphs using a co-ordinate system are more pronounced

➢Knowledge of suitable plot with respect to the data types brings more
clarity to the information

➢Usage of labels, titles, legends and pointers passes seamless
information the wider audience

Nature of Visualization

❑ Depending on the number of variables used for plotting the visualization and the
type of variables, there could be different types of charts which we could use to
understand the relationship. Based on the count of variables, we could have:

➢Univariate plot(involves only one variable)

➢Bivariate plot(more than one variable in required)

✓A Univariate plot could be for a continuous variable to understand the spread and
distribution of the variable while for a discrete variable it could tell us the count.

✓Similarly, a Bivariate plot for continuous variable could display essential statistic
like correlation, for a continuous versus discrete variable could lead us to very
important conclusions like understanding data distribution across different levels of
a categorical variable. A bivariate plot between two discrete variables could also be
developed.

Python Libraries

▪ There are a lot of python libraries which could be used to build
visualization like matplotlib, vispy, bokeh, seaborn, pygal, folium,
plotly, cufflinks, and networkx.

▪Of the many, matplotlib and seaborn seems to be very widely used for
basic to intermediate level of visualizations.

Using Matplotlib for plotting

❑ It is an amazing visualization library in Python for 2D plots of arrays, It is
a multi-platform data visualization library built on NumPy arrays and
designed to work with the broader SciPy stack.

❑Some of the benefits and features of matplotlib.

➢It’s fast, efficient as it is based on numpy and also easier to build.

➢Has undergone a lot of improvements from the open source community
since inception and hence a better library having advanced features as well.

➢Well maintained visualization output with high quality graphics draws a lot
of users to it.

➢Basic as well as advanced charts could be very easily built.

➢From the users/developers point of view, since it has a large community
support, resolving issues and debugging becomes much easier.

When to Use Matplotlib:

• When you need detailed control over plot elements.

• For creating complex or non-standard plots.

• When working on projects requiring extensive customization.

Basic plotting in Matplotlib

Box plot

▪A boxplot, also known as a box and whisker plot, the box and the
whisker are clearly displayed in the below image.

▪ It is a very good visual representation when it comes to measuring the
data distribution.

▪Clearly plots the median values, outliers and the quartiles.
Understanding data distribution is another important factor which
leads to better model building. If data has outliers, box plot is a
recommended way to identify them and take necessary actions.

import matplotlib.pyplot as plt

Sample data (Manually provided)

group1 = [78, 80, 82, 85, 88, 90, 92, 95, 100] # Blood Pressure for Group 1

group2 = [85, 87, 89, 92, 94, 97, 100, 105, 110] # Blood Pressure for Group 2

Combine the groups in a list

data = [group1, group2]

Create the box plot

plt.figure(figsize=(6, 4))

plt.boxplot(data, labels=["Group 1", "Group 2"])

Labels and title

plt.xlabel("Groups")

plt.ylabel("Blood Pressure")

plt.title("Box Plot Example")

Show the plot

plt.grid(True)

plt.show()

Scatter Plot

▪ Scatter plots or scatter graphs is a bivariate plot having greater resemblance
to line graphs in the way they are built. A line graph uses a line on an X-Y
axis to plot a continuous function, while a scatter plot relies on dots to
represent individual pieces of data. These plots are very useful to see if two
variables are correlated. Scatter plot could be 2 dimensional or 3
dimensional.

▪ Advantages of a scatter plot:

➢Displays correlation between variables

➢Suitable for large data sets

➢Easier to find data clusters

➢Better representation of each data point

import matplotlib.pyplot as plt

Sample data (Manually provided)

x_values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # X-axis values

y_values = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] # Y-axis values

Create scatter plot

plt.figure(figsize=(6, 4))

plt.scatter(x_values, y_values, color='blue', marker='o', label="Data Points")

Add a line connecting the points

plt.plot(x_values, y_values, color='red', linestyle='-', linewidth=1)

Labels and title

plt.xlabel("X-axis")

plt.ylabel("Y-axis")

plt.title("Simple Scatter Plot")

Show legend

plt.legend()

Show grid

plt.grid(True)

Display the plot

plt.show()

Histogram

▪ Histograms display counts of data and are hence similar to a bar chart. A
histogram plot can also tell us how close a data distribution is to a normal
curve. While working out statistical method, it is very important that we
have a data which is normally or close to a normal distribution. However,
histograms are univariate in nature and bar charts bivariate.

▪ A bar graph charts actual counts against categories e.g. height of the bar
indicates the number of items in that category whereas a histogram displays
the same categorical variables in bins.

▪ Bins are integral part while building a histogram they control the data points
which are within a range. As a widely accepted choice we usually limit bin
to a size of 5-20, however this is totally governed by the data points which
is present.

import matplotlib.pyplot as plt

Sample data (Manually provided)

data = [5, 10, 15, 20, 20, 25, 30, 30, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80]

Create histogram

plt.figure(figsize=(6, 4))

plt.hist(data, bins=5, color='blue', edgecolor='black', alpha=0.7)

Labels and title

plt.xlabel("Value Range")

plt.ylabel("Frequency")

plt.title("Simple Histogram")

Show grid

plt.grid(axis='y', linestyle='--', alpha=0.7)

Display the plot

plt.show()

Bar plot

▪A bar plot (or bar chart) is a type of data visualization that represents
categorical or numerical data using rectangular bars. The length or
height of each bar corresponds to the value it represents.

▪ Types of Bar Plots:

1. Vertical Bar Plot – Bars are aligned vertically (most common).

2. Horizontal Bar Plot – Bars are aligned horizontally.

3. Grouped Bar Plot – Multiple bars for different categories side by
side.

4. Stacked Bar Plot – Bars stacked on top of each other to show
proportions.

▪When to Use a Bar Plot:

✓To compare different categories.

✓To display numerical data grouped by a category.

✓To show trends over time (if categories represent time periods).

import matplotlib.pyplot as plt

import numpy as np

Sample data

categories = ['Category A', 'Category B', 'Category C', 'Category D']

values = [10, 25, 15, 30] # Corresponding values for each category

Create bar plot

plt.figure(figsize=(6, 4))

plt.bar(categories, values, color='green')

Labels and title

plt.xlabel("Categories")

plt.ylabel("Values")

plt.title("Bar Plot Example")

Display the plot

plt.show()

Pie Chart

▪ Pie chart is a univariate analysis and is typically used to show
percentage or proportional data. The percentage distribution of each
class in a variable is provided next to the corresponding slice of the
pie. The python libraries which could be used to build a pie chart are
matplotlib and seaborn.

▪Below are the advantages of a pie chart

➢Easier visual summarization of large data points

➢Effect and size of different classes can be easily understood

➢Percentage points are used to represent the classes in the data points

import matplotlib.pyplot as plt

Manually define categories and values

labels = ['Category A', 'Category B', 'Category C', 'Category D']

sizes = [25, 35, 20, 20] # Corresponding values (percentages)

colors = ['gold', 'lightblue', 'lightgreen', 'lightcoral'] # Colors for each slice

explode = (0.1, 0, 0, 0) # "Explode" the first slice (Category A)

Create the pie chart

plt.figure(figsize=(6, 6))

plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=140,
explode=explode)

Title

plt.title("Pie Chart Example")

Display the plot

plt.show()

Error Bars

▪ Error bars could be defined as a line through a point on a graph,
parallel to one of the axes, which represents the uncertainty or error of
the corresponding coordinate of the point. These types of plots are
very handy to understand and analyze the deviations from the target.
Once errors are identified, it could easily lead to deeper analysis of the
factors causing them.

➢Deviation of data points from the threshold could be easily captured

➢Easily captures deviations from a larger set of data points

➢It defines the underlying data

Import required module

import matplotlib.pyplot as plt

import numpy as np

Assign axes

x = np.linspace(0,5.5,10)

y = 10*np.exp(-x)

Assign errors regarding each axis

xerr = np.random.random_sample(10)

yerr = np.random.random_sample(10)

Adjust plot

fig, ax = plt.subplots()

ax.errorbar(x, y, xerr=xerr, yerr=yerr, fmt='-o')

Assign labels

ax.set_xlabel('x-axis'), ax.set_ylabel('y-axis')

ax.set_title('Line plot with error bars')

Illustrate error bars

plt.show()

Using Seaborn for plotting

❑ Seaborn is a statistical data visualization library built on top of Matplotlib.
It is designed to make it easier to create aesthetically pleasing and
informative statistical graphics.

❑ Key Features of Seaborn:

➢Ease of Use: Simplifies the creation of complex plots with fewer lines of
code compared to Matplotlib.

➢Built-in Themes: Provides attractive themes and color palettes that enhance
the appearance of plots.

➢Statistical Plots: Includes functions for visualizing statistical relationships
and distributions, making it ideal for exploratory data analysis.

When to Use Seaborn:

• For creating statistical plots quickly and easily.

• To produce attractive and informative visualizations with minimal
effort.

• When you need built-in support for visualizing distributions and
relationships.

Basic plotting in seaborn

Box Plot

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

Sample data (Manually provided)

data = np.random.normal(loc=50, scale=20, size=100) # 100 data points with
normal distribution

Create box plot

plt.figure(figsize=(6, 4))

sns.boxplot(data=data, color='lightblue')

Labels and title

plt.xlabel("Data")

plt.title("Box Plot Using Seaborn")

Display the plot

plt.show()

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

Sample data (Manually provided)

x_values = np.random.rand(50) # 50 random values for X-axis

y_values = np.random.rand(50) # 50 random values for Y-axis

Create scatter plot

plt.figure(figsize=(6, 4))

sns.scatterplot(x=x_values, y=y_values, color='blue', marker='o', label="Data Points")

Labels and title

plt.xlabel("X-axis")

plt.ylabel("Y-axis")

plt.title("Scatter Plot Using Seaborn")

Show legend

plt.legend()

Display the plot

plt.show()

Scatter plot

Histogram

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

Sample data (Manually provided)

data = np.random.normal(loc=50, scale=15, size=1000) # 1000 data points with a normal
distribution

Create histogram using Seaborn

plt.figure(figsize=(6, 4))

sns.histplot(data, bins=20, kde=True, color='blue', edgecolor='black')

Labels and title

plt.xlabel("Value")

plt.ylabel("Frequency")

plt.title("Histogram Using Seaborn")

Display the plot

plt.show()

Countplot

▪A countplot is a plot between a categorical and a continuous variable.
The continuous variable in this case being the number of times the
categorical is present or simply the frequency.

▪ In a sense, count plot can be said to be closely linked to a histogram or
a bar graph.

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

Sample categorical data (Manually provided)

data = pd.DataFrame({

 "Category": ["A", "B", "A", "C", "B", "A", "C", "C", "B", "A", "B", "C", "A", "B", "C"]

})

Create count plot

plt.figure(figsize=(6, 4))

sns.countplot(x="Category", data=data, palette="viridis")

Labels and title

plt.xlabel("Category")

plt.ylabel("Count")

plt.title("Count Plot Using Seaborn")

Display the plot

plt.show()

Correlation plot

▪Correlation plot is a multi-variate analysis which comes very handy to
have a look at relationship with data points. Scatter plots helps to
understand the affect of one variable over the other. Correlation could
be defined as the affect which one variable has over the other.

▪Correlation could be calculated between two variables or it could be
one versus many correlations as well which we could see the below
plot. Correlation could be positive, negative or neutral and the
mathematical range of correlations is from -1 to 1. Understanding the
correlation could have a very significant effect on the model building
stage and also understanding the model outputs.

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

import pandas as pd

Manually generate random numerical data

np.random.seed(42)

data = pd.DataFrame({

 'A': np.random.rand(100),

 'B': np.random.rand(100),

 'C': np.random.rand(100),

 'D': np.random.rand(100)

})

Compute the correlation matrix

corr_matrix = data.corr()

Create the correlation heatmap

plt.figure(figsize=(8, 6))

sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5, vmin=-1, vmax=1)

Title

plt.title("Correlation Heatmap")

Display the plot

plt.show()

Heat Maps

▪Heat map is a multi-variate data representation. The color intensity in
a heat map displays becomes an important factor to understand the
affect of data points.

▪Heat maps are easier to understand and easier to explain as well. When
it comes to data analysis using visualization, its very important that the
desired message gets conveyed with the help of plots.

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

Manually generate numerical data (random matrix)

data = np.random.rand(5, 5) # 5x5 matrix of random values

Create the heatmap

plt.figure(figsize=(6, 4))

sns.heatmap(data, annot=True, cmap="YlGnBu", linewidths=0.5)

Title

plt.title("Simple Heatmap")

Display the plot

plt.show()

Summary of Visualization Techniques

• Line Plot: Useful for showing trends over time.

• Bar Plot: Effective for comparing quantities across categories.

• Histogram: Helps in understanding the distribution of numerical data.

• Scatter Plot: Explores relationships between two numerical variables.

• Box Plot: Visualizes the distribution of data across different
categories.

• Heatmap: Provides a color-coded matrix to visualize data patterns.

Seaborn vs Matplotlib

▪ Matplotlib is a low-level plotting library that provides a high degree of control over individual
elements. Even for basic functionalities, it requires more code.

▪ Whereas seaborn is a high level library for visualization and requires less coding compared to
Matplotlib.

▪ Matplotlib lets users customize the appearances of plots, including color and styles.

▪ Seaborn has in-built themes and color palettes making it easier for users to create visually
appealing plots.

▪ Matplotlib can work with pandas but users may need to manipulate data for certain type of plots.

▪ Seaborn is very much flexible with pandas and it doesn’t require as much manipulation as
Matplotlib.

	Slide 1
	Slide 2: Data Visualization
	Slide 3
	Slide 4: Nature of Visualization
	Slide 5: Python Libraries
	Slide 6: Using Matplotlib for plotting
	Slide 7: When to Use Matplotlib:
	Slide 8: Basic plotting in Matplotlib
	Slide 9: Box plot
	Slide 10
	Slide 11
	Slide 12: Scatter Plot
	Slide 13
	Slide 14
	Slide 15: Histogram
	Slide 16
	Slide 17
	Slide 18: Bar plot
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Pie Chart
	Slide 23
	Slide 24
	Slide 25: Error Bars
	Slide 26
	Slide 27
	Slide 28: Using Seaborn for plotting
	Slide 29: When to Use Seaborn:
	Slide 30: Basic plotting in seaborn
	Slide 31: Box Plot
	Slide 32
	Slide 33: Scatter plot
	Slide 34
	Slide 35: Histogram
	Slide 36
	Slide 37: Countplot
	Slide 38
	Slide 39
	Slide 40: Correlation plot
	Slide 41
	Slide 42
	Slide 43: Heat Maps
	Slide 44
	Slide 45
	Slide 46: Summary of Visualization Techniques
	Slide 47: Seaborn vs Matplotlib

