
Learning outcomes:

➢ Data Visualization for Engineering:

▪ Plotting 2D and 3D graphs relevant to engineering problems

Lecture 6



Understanding Engineering Graphs

▪ Engineering Graphs are fundamental to interpreting and analysing data 
in the field of engineering. 

▪ These graphs provide a visual representation of data and can assist in 
identifying underlying patterns, trends, and relationships.

▪Understanding this form of data representation can significantly aid in 
designing effective solutions to engineering problems.



Cartesian Plots in Engineering

▪A Cartesian plot is a type of graph that depicts relationships between 
two variables where values for each are plotted along X and Y axes.

▪Cartesian plots, sometimes referred to as Cartesian coordinates or a 
Cartesian grid, are incredibly valuable graph types in Engineering 
Mathematics. On these graphs, you plot data points according to their 
x- and y- coordinates. The coordinates represent the intersection of the 
lines drawn from the point vertically (Y-axis) and horizontally (X-
axis) to the axes. 



➢ One example of a Cartesian plot is a straight line graph represented 
by the formula:

y = mx + c

where m is the gradient of the line and c is the y-intercept. You can 
characterise these plots into:

✓1D (One Dimensional)

✓2D (Two Dimensional)

✓3D (Three Dimensional)



❑ Interpreting Engineering Graphs

➢Engineering graphs provide you with a powerful tool for data interpretation. 
However, it's important not only to read them correctly but to also avoid 
common errors that could potentially distort the data analysis.

❑ Reading and Analysing Engineering Graphs

➢A systematised approach to reading any kind of graph includes recognising 
the type of graph used, understanding the scales used on the axes, 
identifying key data points, and interpreting the overall trend. For instance, 
when analysing a logarithmic plot, if the x-axis (horizontal) operates on a 
logarithmic scale, each increment can represent a tenfold increase. On the 
other hand, if the y-axis (vertical) is logarithmic, it requires a relative 
comparison rather than an absolute one.



Tools and Techniques for Engineering Graphs

❑ The effective creation and interpretation of Engineering Graphs often 
demand the use of various tools and technologies. From conventional 
methods like graph paper and compasses to sophisticated software 
applications, these tools are crucial in inscribing and deciphering 
intricate graphical data.

❑ Examples of Popular Engineering Graph Tools

➢Introducing digital tools into your Engineering Graphs' development 
can aid in creating more precise, complex, and visually appealing 
graphical data. Here are a few examples of popular digital tools:



• Microsoft Excel: An excellent tool for constructing and analysing various 
types of graphs. Its wide array of pre-constructed graph types and 
customisable options make it a go-to choice for many engineers.

• Matplotlib: A popular Python Library extensively used in producing high 
quality 2D and 3D graphs. With its customisable feature, it becomes an 
excellent tool for engineering mathematics.

• Tableau: An advanced data visualisation tool that excels in creating 
interactive charts, making data analysis and interpretation intuitive. It's 
especially beneficial for larger datasets.

• AutoCAD: A software application extensively used for creating 2D and 3D 
Engineering Graphs in fields like architectural and mechanical engineering.

• Graphing Calculator: An electronic calculator capable of plotting graphs, 
solving simultaneous equations, and performing numerous other tasks.



Plotting in Engineering Mathematics using Tools

▪When constructing graphs for engineering mathematics, physical tools 
have limited use due to the complexity and precision demanded by 
these graphs.

 

▪Modern digital tools mentioned above offer the required advanced 
features to conveniently plot these graphs. 

▪ These tools notably have a wide range of built-in functionalities that 
include, but are not limited to, customising data series, recalculating 
automatically when data is modified, applying a trend line to your 
data, among others.



Key Tips and Tricks for Effective Plotting in Engineering 
Mathematics

❑ While these digital tools ease plotting graphs, certain tips can make the 
process more efficacious:

▪ Proper Labelling: Always label the axes accurately and provide units.

▪ Scale Selection: Select your scale carefully to ensure the data is neither 
squashed nor stretched.

▪Data Segregation: When working with multiple data sets, colour code for 
easy distinction.

▪Accuracy: Ensure precise plotting of data points and drawing of lines 
between them.

▪ Legend Usage: A valuable tool for helping readers understand the plotted 
data better.



Avoiding Common Pitfalls in Plotting Engineering Graphs

❑ While plotting graphs, it's also important to be aware of some of the 
common errors that can lead to misinterpretations.

▪ Neglecting Negative Values: Don't forget to include negative numbers if 
your data range includes them.

▪ Non-uniform Scale: Always have a uniform scale for accurate 
representation of the data.

▪Missing Outliers: Ensure to include all data points, particularly the outliers, 
for a complete picture.

▪ Starting From Zero: Starting the y-axis from zero can often help give an 
accurate representation of the data.

✓These potential pitfalls can distort the picture the data presents and hence, 
they should be avoided for accurate and meaningful interpretation.



❖Matplotlib library from Python is quite a potent tool in plotting 
engineering mathematics graphs.

❖Matplotlib is the workhorse of visualization in Python and therefore, it 
should always be your first choice, before trying anything else.

❑ 2D-plotting in matplotlib

• To see how plotting with matplotlib works, let’s start with a simple 
example of 2D curve plotting,

2D and 3D-Plotting In Matplotlib



import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]

y = [1, 4, 9, 16, 25]

plt.plot(x, y)

plt.xlabel('X - Axis')

plt.ylabel('Y - Axis')

plt.title('Cartesian Plot Example')

plt.show()

✓Here, 'x' and 'y' are the respective coordinates. This code will generate a 
Cartesian graph with 'x' and 'y' as the axes.





Draw multiple graphics in one drawing

import matplotlib.pyplot as plt

import numpy as np

fig = plt.figure()

# Generates 50 evenly spaced values between 0 and 2π (approx. 6.28), which serves as the X-axis 
values

x = np.linspace(0, 2 * np.pi, 50)

y_sin = np.sin(x) # Computes the sine value for each x.

y_cos = np.cos(x) # Computes the cosine value for each x.

plt.title('sin(x) & cos(x)')

plt.xlabel('X axis')

plt.ylabel('Y axis')

plt.plot(x, y_sin, color = "red", linewidth = 1.5, linestyle = "-.", label = "y_sin")

plt.plot(x, y_cos, marker = '+', linestyle = '-', label = 'y_cos')

plt.legend(loc = "upper left") # Adds a legend in the upper left corner, displaying "y_sin" and 
"y_cos".

plt.show()





Create a simple 2d histogram using matplotlib

▪Here, we are creating a simple 2d histogram using matplotlib in 
Python. 

▪ Firstly we have to import matplotlib module. Create a simple dataset 
to be plotted on the x and y-axis using a list of some integers and then 
used hist2d() function to plot the graph. we have also added labels on 
the x and y-axis using xlabel() and ylabel() functions and defined the 
title using title() function. At last, plotting the 2d histogram using the 
plt.show() function.



# Import required modules 

import matplotlib.pyplot as plt 

# create data for x and y-axis 

x = [1,2,3,4,5,6,7,8,9,10] 

y = [1,4,9,16,25,36,49,64,81,100] 

# Create a 2-D histogram 

plt.hist2d(x, y) 

# Add labels and title 

plt.xlabel('X') 

plt.ylabel('Y') 

plt.title('2-D Histogram')  

# Display the plot 

plt.show()





Create a 2d histogram using Matplotlib and NumPy in Python

▪Here, we are going to create a 2d histogram using NumPy which is used 
to create a random dataset. 

▪ This time we have used bins(30, 30) as parameter in our hist2d() function, 
and cmap which is a color map used to define the colors of the plot we set 
the cmap value as ‘viridis’ which is its default value. Use colorbar() 
function to draw a color bar at the right side of the plot indicating which 
color denotes what set values. Adding labels and then plotting the 2d 
histogram using the plt.show() function.



# Importing required modules 

import matplotlib.pyplot as plt 

import numpy as np 

# Generate random data 

x = np.random.randn(1000) 

y = np.random.randn(1000) 

# Create a 2-D histogram 

plt.hist2d(x, y, bins=(30, 30), cmap='viridis') 

plt.colorbar() 

# Add labels and title 

plt.xlabel('X') 

plt.ylabel('Y') 

plt.title('2-D Histogram') 

# Display the plot 

plt.show()





Customize the 2d histogram using Matplotlib in Python

▪Here, we have plotted the 2d histogram using Matplotlib with some 
customization. 

▪ The procedure is the same as above with some changes to plot the 
customized 2d histogram. Here we have imported cm which is a color 
map from matplotlib to change the color of the plot. In hist2() function 
we have changed the color to a rainbow using cmap and made the plot 
transparent setting alpha=0.6. Its value ranges from 0 to 1. We have 
also set the range of the x and y-axis to (-2.5,2.5) and (-5,5) 
respectively as shown in the output.



# Import required libraries 

import matplotlib.pyplot as plt 

from matplotlib import cm     # For using colormaps.

import numpy as np 

# Generate random data 

x = np.random.randn(50000) 

y = np.random.randn(50000) 

# Create a 2-D histogram with a  

# different color map and transparency 

# bins=(30, 30) → Divides the X & Y axes into 30 bins each (making a 30x30 grid).

# cmap=cm.gist_rainbow → Uses the "gist_rainbow" colormap for vibrant colors.

# range=[(-2.5,2.5), (-5,5)] → Sets the X-axis range from -2.5 to 2.5 and Y-axis range from -5 to 5.

plt.hist2d(x, y, bins=(30, 30), cmap=cm.gist_rainbow, alpha=0.6, range=[(-2.5,2.5),(-5,5)]) 

plt.colorbar() #  Adds a color bar to indicate density levels (higher frequency = brighter color).

# Add labels and title 

plt.xlabel('X') 

plt.ylabel('Y') 

plt.title('2-D Histogram with a \ different color map and transparency') 

# Display the plot 

plt.show() 





❑ 3D-plotting in matplotlib

• 3D plots are very important tools for visualizing data that have three 
dimensions such as data that have two dependent and one independent 
variable. 

• By plotting data in 3d plots we can get a deeper understanding of data 
that have three variables. 

• We can use various matplotlib library functions to plot 3D plots.



import numpy as np

import matplotlib.pyplot as plt

 

fig = plt.figure()

ax = plt.axes(projection='3d')

Examples to plot 3D



▪With the above syntax three -dimensional axes are enabled and data 
can be plotted in 3 dimensions. 3 dimension graph gives a dynamic 
approach and makes data more interactive. Like 2-D graphs, we can 
use different ways to represent to plot 3-D graphs. We can make a 
scatter plot, contour plot, surface plot, etc. Let’s have a look at 
different 3-D plots.

▪Graphs with lines and points are the simplest 3-dimensional graph.  
We will use ax.plot3d and ax.scatter functions to plot line and point 
graph respectively.



3-Dimensional Line Graph Using Matplotlib

For plotting the 3-Dimensional line graph we will use the mplot3d 
function from the mpl_toolkits library. For plotting lines in 3D we will 
have to initialize three variable points for the line equation. In our case, 
we will define three variables as x, y, and z. 



# importing mplot3d toolkits, numpy and matplotlib

from mpl_toolkits import mplot3d  # mpl_toolkits.mplot3d → Enables 3D plotting in 
Matplotlib.

import numpy as np

import matplotlib.pyplot as plt

fig = plt.figure()

# syntax for 3-D projection

ax = plt.axes(projection ='3d') # Creates a 3D figure and initializes a 3D axis using 
projection='3d'.

# defining all 3 axis

z = np.linspace(0, 1, 100) # Generates 100 evenly spaced values from 0 to 1 (Z-axis).

x = z * np.sin(25 * z) # Defines x as a spiral function.

y = z * np.cos(25 * z) # Defines y as a spiral function.

# plotting

ax.plot3D(x, y, z, 'green')

ax.set_title('3D line plot')

plt.show()





3-Dimensional Scattered Graph Using Matplotlib

To plot the same graph using scatter points we will use the scatter() 
function from matplotlib. It will plot the same line equation using 
distinct points. 



# importing mplot3d toolkits

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

fig = plt.figure()

# syntax for 3-D projection

ax = plt.axes(projection ='3d')

# defining axes

z = np.linspace(0, 1, 100)

x = z * np.sin(25 * z)

y = z * np.cos(25 * z)

c = x + y

ax.scatter(x, y, z, c = c) # creates a 3D scatter plot where points are plotted in (x, y, z) space 
with colors determined by c.

# syntax for plotting

ax.set_title('3d Scatter plot')

plt.show()





▪ Surface Graphs using Matplotlib library  

Surface graphs and Wireframes graph work on gridded data. They take 
the grid value and plot it on a three-dimensional surface. We will use the 
plot_surface() function to plot the surface plot.



# Importing libraries

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

# Defining surface and axes

x = np.outer(np.linspace(-2, 2, 10), np.ones(10)) # Creates a 10x10 grid for X-axis values.

y = x.copy().T  # Copies X values and transposes them to get Y values.

z = np.cos(x ** 2 + y ** 3) # Computes Z values using a mathematical function.

# Creating a figure

fig = plt.figure()

# Syntax for 3D plotting

ax = plt.axes(projection='3d')

# Plotting the surface

ax.plot_surface(x, y, z, cmap='viridis', edgecolor='green') # Uses the "viridis" colormap / Outlines the grid with 
green edges.

# Adding title

ax.set_title('Surface Plot')

# Displaying the plot

plt.show()





▪Wireframes graph using Matplotlib library  

For plotting the wireframes graph we will use the plot_wireframe() 
function from the matplotlib library.



from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

# function for z axis

def f(x, y):

    return np.sin(np.sqrt(x ** 2 + y ** 2))

# x and y axis

x = np.linspace(-1, 5, 10)

y = np.linspace(-1, 5, 10)

X, Y = np.meshgrid(x, y)

Z = f(X, Y)

fig = plt.figure()

ax = plt.axes(projection ='3d')

ax.plot_wireframe(X, Y, Z, color ='green')

ax.set_title('wireframe');





▪Contour Graphs using Matplotlib library

The contour graph takes all the input data in two-dimensional regular 
grids, and the Z data is evaluated at every point. We use the 
ax.contour3D function to plot a contour graph. Contour plots are an 
excellent way to visualize optimization plots. 



def function(x, y):

    return np.sin(np.sqrt(x ** 2 + y ** 2))

# Creates 40 evenly spaced points from -10 to 10.

x = np.linspace(-10, 10, 40)

y = np.linspace(-10, 10, 40)

X, Y = np.meshgrid(x, y) # Forms a grid of coordinates for plotting.

Z = function(X, Y) # Computes Z values using the function f(x,y), applying the sine 
function to each coordinate pair.

fig = plt.figure(figsize=(10, 8))

ax = plt.axes(projection='3d')

ax.plot_surface(X, Y, Z, cmap='cool', alpha=0.8) # Uses the "cool" colormap (blue to pink).

ax.set_title('3D Contour Plot of function(x, y) =\ sin(sqrt(x^2 + y^2))', fontsize=14)

ax.set_xlabel('x', fontsize=12)

ax.set_ylabel('y', fontsize=12)

ax.set_zlabel('z', fontsize=12)

plt.show()





▪ Plotting Surface Triangulations In Python 

The above graph is sometimes overly restricted and inconvenient. So by 
this method, we use a set of random draws. The function ax.plot_trisurf 
is used to draw this graph. It is not that clear but more flexible.

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from matplotlib.tri import Triangulation

def f(x, y):

    return np.sin(np.sqrt(x ** 2 + y ** 2))



# Creates 30 points between -6 and 6.

x = np.linspace(-6, 6, 30)

y = np.linspace(-6, 6, 30)

X, Y = np.meshgrid(x, y)

Z = f(X, Y) # Computes the Z values.

# Creates a triangular mesh using Triangulation().

# Flattens X and Y using .ravel(), converting them into 1D arrays.

tri = Triangulation(X.ravel(), Y.ravel())

fig = plt.figure(figsize=(10, 8))

# Creates a 3D figure and initializes 3D axes 

ax = plt.axes(projection='3d')

ax.plot_trisurf(tri, Z.ravel(), cmap='cool', edgecolor='none', alpha=0.8) # Plots a triangulated 3D 
surface.

ax.set_title('Surface Triangulation Plot of f(x, y) =\ sin(sqrt(x^2 + y^2))', fontsize=14)

ax.set_xlabel('x', fontsize=12)

ax.set_ylabel('y', fontsize=12)

ax.set_zlabel('z', fontsize=12)

plt.show()




	Slide 1
	Slide 2: Understanding Engineering Graphs
	Slide 3: Cartesian Plots in Engineering
	Slide 4
	Slide 5
	Slide 6: Tools and Techniques for Engineering Graphs
	Slide 7
	Slide 8: Plotting in Engineering Mathematics using Tools
	Slide 9: Key Tips and Tricks for Effective Plotting in Engineering Mathematics
	Slide 10: Avoiding Common Pitfalls in Plotting Engineering Graphs
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Draw multiple graphics in one drawing
	Slide 15
	Slide 16: Create a simple 2d histogram using matplotlib
	Slide 17
	Slide 18
	Slide 19: Create a 2d histogram using Matplotlib and NumPy in Python
	Slide 20
	Slide 21
	Slide 22: Customize the 2d histogram using Matplotlib in Python
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Examples to plot 3D
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

