
Learning outcomes:

➢ The general structure of Python programs

Lecture 9

❖What is a Program?

• A program, in the realm of programming languages of computer science and
software development, is a definition of a set of instructions in a certain
language which are given a task or tasked to resolve a particular problem.

❖What is the Python Programming Language?

• Python is a high-level, interpreted programming language that is easy to learn
and use. It has a simple and easy-to-understand syntax that emphasizes
readability and reduces the cost of program maintenance.

• Unlike many other programming languages, Python is well known for its
simplicity and readability due to having a high-level interpretation that makes it
not complicated to understand.

• Developed by Guido van Rossum in 1991 and released to the public, Python
ranks among the most sought-after programming languages today, alongside
Shell Script, Java, C++, and Perl, used in web development, data analysis,
artificial intelligence, scientific computing, and more.

❖The basic structure of a Python program consists of the following components:

1.Comments: Comments are used to explain the purpose of the code or to make
notes for other programmers. They start with a ‘#’ symbol and are ignored by the
interpreter.

This is a single-line comment

"""

This is a multi-line comment.

It can span multiple lines.

"""

2. Import Statements: Import statements are used to import modules or
libraries into the program. These modules contain predefined functions that
can be used to accomplish tasks.

import module_name

from module_name import function_name

3. Variable Assignments: Variables are used to store data in memory for later
use. In Python, variables do not need to be declared with a specific type.

variable_name = 42

4. Data Types: Python supports several built-in data types including
integers, floats, strings, booleans, and lists.

5. Operators: Operators are used to perform operations on variables and
data. Python supports arithmetic, comparison, and logical operators.

6. Control Structures: Control structures are used to control the flow of
a program. Python supports if-else statements, for loops, and while
loops.

7. Functions: Functions are used to group a set of related statements together and
give them a name. They can be reused throughout a program.

def my_function(parameter1, parameter2):

Function body

result = parameter1 + parameter2

return result

8. Classes: Classes are used to define objects that have specific attributes and
methods. They are used to create more complex data structures and encapsulate
code.

9. Exceptions: Exceptions are used to handle errors that may occur during the
execution of a program.

Python Data Types

• Python offers, enabling you to manipulate and manage data with precision
and flexibility.

Python Numbers

• In Python, “Numbers” is a category that encompasses different types of
numeric data.

• Python supports various types of numbers, including integers, floating-point
numbers, and complex numbers. Here’s a brief overview of each:

✓Python Integer

✓Python Float

✓Python Complex

✓Type Conversion in Python

✓Decimal Numbers in Python

Python Integer

• Python int is the whole number, including negative numbers but not
fractions. In Python, there is no limit to how long an integer value can be.

• Example 1: Creating int and checking type

num = -8

print the data type

print(type(num))

✓Output:

<class 'int'>

• Example 2: Performing arithmetic Operations on int type

a = 5

b = 6

Addition

c = a + b

print("Addition:",c)

✓Output:

Addition: 11

d = 9

e = 6

Subtraction

f = d - e

print("Subtraction:",f)

✓Output:

Subtraction: 3

g = 8

h = 2

Division

i = g // h

print("Division:",i)

✓Output:

Division: 4

j = 3

k = 5

Multiplication

l = j * k

print("Multiplication:",l)

✓Output:

Multiplication: 15

m = 25

n = 5

Modulus

o = m % n

print("Modulus:",o)

✓Output:

Modulus: 0

p = 6

q = 2

Exponent

r = p ** q

print("Exponent:",r)

✓Output:

Exponent: 36

Python Float

• This is a real number with a floating-point representation. It is specified by
a decimal point. Optionally, the character e or E followed by a positive or
negative integer may be appended to specify scientific notation. Some
examples of numbers that are represented as floats are 0.5 and -7.823457.

• They can be created directly by entering a number with a decimal point, or
by using operations such as division on integers. Extra zeros present at the
number’s end are ignored automatically.

• Example 1: Creating float and checking type

num = 3/4

print the data type

print(type(num))

✓Output:

<class 'float'>

• As we have seen, dividing any two integers produces a float. A float is also
produced by running an operation on two floats, or a float and an integer.

num = 6 * 7.0

print(type(num))

✓Output:

<class 'float'>

• Example 2: Performing arithmetic Operations on the float type

a = 5.5

b = 3.2

Addition

c = a + b

print("Addition:", c)

Subtraction

c = a-b

print("Subtraction:", c)

Division

c = a/b

print("Division:", c)

Multiplication

c = a*b

print("Multiplication:", c)

✓Output:

Addition: 8.7

Subtraction: 2.3

Division: 1.71875

Multiplication: 17.6

oNote: The accuracy of a floating-point number is only up to 15 decimal
places, the 16th place can be inaccurate.

Python Complex

• A complex number is a number that consists of real and imaginary parts.
For example, 2 + 3j is a complex number where 2 is the real component,
and 3 multiplied by j is an imaginary part.

• Example 1: Creating Complex and checking type

num = 6 + 9j

print(type(num))

✓Output:

<class 'complex'>

• Example 2: Performing arithmetic operations on complex type

a = 1 + 5j

b = 2 + 3j

Addition

c = a + b

print("Addition:",c)

✓Output:

Addition: (3+8j)

d = 1 + 5j

e = 2 - 3j

Subtraction

f = d - e

print("Subtraction:",f)

✓Output:

Subtraction: (-1+8j)

j = 1 + 5j

k = 2 + 3j

Multiplication

l = j * k

print("Multiplication:",l)

✓Output:

Multiplication: (-13+13j)

g = 1 + 5j

h = 2 + 3j

Division

i = g / h

print("Division:",i)

✓Output:

Division: (1.307692307692308+0.5384615384615384j)

Type Conversion in Python

• We can convert one number into the other form by two methods:

1. Using Arithmetic Operations:

We can use operations like addition, and subtraction to change the type of number
implicitly(automatically), if one of the operands is float. This method is not working for
complex numbers.

➢Example: Type conversion using arithmetic operations

a = 1.6

b = 5

c = a + b

print(c)

✓Output:

6.6

2. Using built-in functions

We can also use built-in functions like int(), float() and complex() to convert into
different types explicitly.

➢Example: Type conversion using built-in functions

a = 2

print(float(a))

✓Output:

2.0

b = 5.6

print(int(b))

✓Output:

5

c = '3'

print(type(int(c)))

✓Output:

<class 'int'>

d = '5.6'

print(type(float(d)))

✓Output:

<class 'float'>

e = 5

print(complex(e))

✓Output:

(5+0j)

f = 6.5

print(complex(f))

✓Output:

(6.5+0j)

• When we convert float to int, the decimal part is truncated.

• Note:

1. We can’t convert a complex data type number into int data type and float
data type numbers.

2. We can’t apply complex built-in functions on strings.

Decimal Numbers in Python

• Arithmetic operations on the floating number can give some unexpected
results.

• Example 1: Let’s consider a case where we want to add 1.1 to 2.2. You all
must be wondering why the result of this operation should be 3.3 but let’s
see the output given by Python.

a = 1.1

b = 2.2

c = a+b

print(c)

✓Output:

3.3000000000000003

• Example 2: The result can be unexpected. Let’s consider another case where
we will subtract 1.2 and 1.0. Again we will expect the result as 0.2, but let’s
see the output given by Python.

a = 1.2

b = 1.0

c = a-b

print(c)

✓Output:

0.19999999999999996

String

What is a String in Python?

• Python Strings are arrays of bytes representing Unicode characters. In
simpler terms, a string is an immutable array of characters.

• Python does not have a character data type, a single character is simply a
string with a length of 1.

❖Note: As strings are immutable, modifying a string will result in creating a
new copy.

Accessing characters in Python String

• In Python Programming tutorials, individual characters of a String can be
accessed by using the method of Indexing.

• Python strings are zero-indexed, meaning the first character is at index 0,
the second character at index 1, and so on.

• Indexing allows negative address references to access characters from the
back of the String, e.g. -1 refers to the last character, -2 refers to the second
last character, and so on.

• While accessing an index out of the range will cause an IndexError. Only
Integers are allowed to be passed as an index, float or other types that will
cause a TypeError.

Python String Indexing

Example: Python Strings Operations

String = "Welcome to GeeksForGeeks"

print("Creating String: ")

print(String)

✓Output

Creating String:

Welcome to GeeksForGeeks

Printing First character

print("\nFirst character of String is: ")

print(String[0])

Printing Last character

print("\nLast character of String is: ")

print(String[-1])

✓Output

First character of String is:

W

Last character of String is:

s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Python Data Types
	Slide 9: Python Numbers
	Slide 10: Python Integer
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Python Float
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Python Complex
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Type Conversion in Python
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Decimal Numbers in Python
	Slide 33
	Slide 34: String
	Slide 35: Accessing characters in Python String
	Slide 36: Python String Indexing
	Slide 37: Example: Python Strings Operations
	Slide 38

