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Gépi tanulas

Hétkoznapi sz6hasznalatban a tanulas azt jelenti, hogy egy feladat megoldasahoz
szabadlyokat taldlunk, vagy fedeziink fel. Példaul egy kisgyermek megtanulhatja, hogy a
madaraknak van szarnyuk, és képesek repilni - anélkil, hogy ezt valaki pontos szabalyok formajaban
elmagyarazna neki. A gyerek megfigyelései alapjan felismeri a jellemz6 mintakat és kapcsolatokat, és
ez alapjan képes U] esetekre is kdvetkeztetni.

Formalisan tekintve, a gépi tanulas célja olyan fliggvény megtalalasa, amely egy bemeneti adat [
alapjan megbizhatdan becsli a hozza tartoz6 kimenetet [J. Példaul ha a bemenet egy rendszamtablat
abrazolé kép, a kimenet a rajta olvashatd szoveg lesz.

Ahhoz, hogy ez megvaldsuljon, eldszor is 6sszegydjtiink egy tanitéhalmazt, amely bemeneti és
kimeneti adatparokat tartalmaz:

$$ \mathcal{D} =\{(x 1,y 1), (x 2,y 2),\ldots, (x N,y N\} $$

Ezutan definidlunk egy paraméteres modellt \( f(x; w) \), ahol:

(f\) egy fliggvény (pl. neuralis haldzat),

\
\( w ) a tanulhaté paraméterek dsszessége (sulyok),

cél, hogy \( f(x_i; w) \approx y_i\) legyen, azaz tetszélegesen kivalasztott adatpar bemenetére \(x_i\),
az \(y_i\) kimenetet adja.

A tanulas célja

A tanulas célja az optimalis \( w~*\) paraméter megtalalasa, amely mellett a modell j6l teljesit. A
modell josagat (teljesitményét) veszteségfiiggvény segitségével mérjik:

$$ \mathcal{L}(w) = \frac{1}{N} \sum_{n=1}"~N\ell(y_n, f(x_n; w)) $$

ahol \( \ell \) példaul lehet a négyzetes hiba, aminek egyik bemenete a tanité halmaz \(y\)
kimenetének értékébdl kivonja, a modell altal szamolt \(\hat{y}\) kimenetet és ennek a kilonbségnek
veszi a négyezetét:

$$ \ell(y, \hat{y}) = (y - \hat{y})~2 $$
llyenkor a \( \ell \) veszteségfliggvény értéke a négyzetes hibak atlaga. Behelyettesitve:
$$ \mathcal{L}(w) = \frac{1}{N} \sum_{n=1}"N (y_n-f(x_n; w))"2 $$

A tanulas célja, hogy megtalaljuk azt a paraméterbedllitast, amely a lehet6 legjobban teljesit. Ez azt
jelenti, hogy olyan sulyokat (paramétereket) keresiink, amelyek a lehet6 legkisebb hibat
eredményezik a tanitéadatokon.

Masként fogalmazva: a tanulas soran azt a sulyvektort szeretnénk megtalalni \(w”~*\), amely
minimalizalja a veszteségfliggvényt — vagyis azt, amely mellett a modell becslései a lehetd
legkdzelebb esnek a tényleges valaszokhoz az 6sszes tanitépéldara nézve.
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$$ w™* = \arg\min_w \mathcal{L}(w) $$

Ez a megkozelités szamos alkalmazas alapjat képezi: képfelismerés, szévegértés, hangfeldolgozas,
jatékstratégia stb. A modell nem szabalyokat programozva mdkdédik, hanem adatokbdl ,tanul meg”
viselkedni.

Példa: Egyszeri linearis modell tanulasa

TegyUk fel, hogy a modelliink (becslé fliggvény) igy néz ki:
$$ f(x; w) = wx $%
és két tanitopéldank van:

* (1,2)
* (2,4)
A cél, hogy olyan \( w ) sulyt taldljunk, amely a kdvetkez6 veszteségfliggvényt minimalizalja:
$$ \mathcal{L}(w) = \frac{1}{2}[(2 - w\cdot 1)"2 + (4 - w\cdot 2)"2] $$

Ez a flggvény azt méri, hogy adott \( w \) esetén mekkora hibat kdvet el a modell. Az alabbi abran
lathatd a veszteségfliggvény alakja, valamint a minimumhely:

e A minimalis veszteség \( \mathcal{L}(w) \approx 0.00\)
» A hozza tartozd optimalis suly: \( w~* = 2.01)

Egyszerd linearis modell veszteségfliggvenye

Vesrtesagfuggveny Llw)
Minimum; w 2.01
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Példa: Osszetettebb modell

Legyen a modell tébb paraméteres:

$$f(x; w) = \sum_{k=1}"Kw_kf k(x)$$
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ahol:

o \(f_k(x)\) elére definialt bazisfliggvények (pl. Gauss-goérbék, szinuszok, polinomok stb.)

*
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» Fekete pontok: zajos tanitéadatok \( (x_n, y n)\)
» Kék gorbék: a 10 darab Gauss-alaku bazisfiggvény \(f_k(x)\)
* Piros gorbe: a tanult figgvény \( f(x; w~*) =\sum w_k f k(x) \)

A modell megtanulta, milyen sulyokkal (\(w\)-kel) kombinalja a bazisfiiggvényeket Ugy, hogy a piros
gorbe minél jobban kdvesse a tanitdadatokat, azaz minimalizalja a négyzetes hibat.

A kovetkezd Python program hozta létre a fenti abrat.

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import mean squared error
from scipy.linalg import solve

# 1. Tanitdadat generdlasa (zajos szinuszgorbe)
np.random.seed(42)

N = 30
X_train = np.linspace(0, 1, N)
y train = np.sin(2 * np.pi * x train) + 0.1 * np.random.randn(N)

# 2. Bazisfiliggvények: Gauss-gorbék
K =10 # Bazisflggvények szdama
centers = np.linspace(0, 1, K)
width = 0.1

def gaussian basis(x, c, s):
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return np.exp(-0.5 * ((x - c)/s)**2)

# 3. Design matrix ® (N x K)
Phi = np.stack([gaussian basis(x train, c, width) for c in centers], axis=1)

# 4. Optimdlis sillyok kiszamitasa (normalegyenlet)
#Ow=y =w= (0t0)10t y
w _star = solve(Phi.T @ Phi, Phi.T @ y train)

# 5. Kiértékelés Gj pontokon

x_test = np.linspace(0, 1, 200)

Phi test = np.stack([gaussian basis(x test, c, width) for c in centers],
axis=1)

y pred = Phi test @ w_star

# 6. Eredmény kirajzolasa
plt.figure(figsize=(10, 6))
for k in range(K):
plt.plot(x test, Phi test[:, k], '--', color='blue', alpha=0.3) #
bazisfiliggvények

plt.plot(x test, y pred, color='red', label='Linedris kombindcié (becslés)')
plt.scatter(x train, y train, color='black', label='Tanitdéadatok')
plt.title("Basis function regression Gaussian bazisfiliggvényekkel")
plt.legend()

plt.grid(True)

plt.tight layout()

plt.show()

Underfitting és overfitting (gyenge és tulzott illeszkedés)

A modell kapacitdsa és a rendelkezésre allé tanitbadatok mennyiségének viszonya fontos szerepet
jatszik a tanulds sikerességében.

Ha a modell tul egyszerii (kevés paramétert vagy kevés bazisfliggvényt haszndl), akkor nem lesz
elég rugalmas ahhoz, hogy megtanulja az adatok mogétti 6sszefliggéseket. Ez az eset az
underfitting (gyenge illeszkedés): a modell nem tud alkalmazkodni még a tanitéadatokhoz sem, és
mind a tanité-, mind a tesztpéldakon nagy hibat vét.

Ezzel szemben, ha a modell tul bonyolult (pl. tul sok paraméterrel dolgozik), akkor hajlamos arra,
hogy a tanitdadatokra tulzottan “railleszkedjen”. Ez az overfitting (tulzott illeszkedés), amely soran a
modell tokéletesen teljesit a tanitdohalmazon, de Uj, ismeretlen adatokra gyengén altalanosit.
Megtanulja a tanitéd halmazban lévé “zajt”, pl. az esetleges hibas vagy kiugro értékeket is.

Az alabbi abra ezt a jelenséget szemlélteti:

» A fekete vonal a valddi (ismeretlen) fliggvény, amely szerint az adatok keletkeztek.
A fekete pontok a tanitépéldak.
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o A kék szaggatott gorbe egy tul egyszerl modell (underfitting): nem tudja kovetni a mintat.
* A piros szaggatott gorbe egy tultanult modell (overfitting): jél illeszkedik a pontokra, de a valddi
gorbétol eltér
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Olyan modellt érdemes tervezni, amely épp elég rugalmas ahhoz, hogy meg tudja tanulni az adatok
szerkezetét, de nem annyira rugalmas, hogy a véletlen zajokat is megtanulja.

A kdvetkezd program hozza létre a fenti abrat:

import numpy as np
import matplotlib.pyplot as plt

# Valdédi (rejtett) flggvény
def true function(x):
return np.sin(2 * np.pi * x)

# Tanitdadat

np.random.seed(1)

x_train = np.linspace(0, 1, 7)

y train = true function(x _train) + 0.1 * np.random.randn(len(x train))

# Teszteléshez slrl intervallum
X test = np.linspace(0, 1, 300)
y true = true function(x test)

# Gauss bazisflggvények
def gaussian basis(x, ¢, s):
(

return np.exp(-0.5 * ((x - c)/s)**2)

def design matrix(x, centers, width):

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/


https://edu.iit.uni-miskolc.hu/_detail/muszaki_informatika:pasted:20250522-101556.png?id=muszaki_informatika%3Agepi_tanulas

Last update: - I . A - oo Prove
2025/05/22 10:30 muszaki_informatika:gepi_tanulas https://edu.iit.uni-miskolc.hu/muszaki_informatika:gepi_tanulas?rev=1747909855

return np.stack([gaussian basis(x, c, width) for ¢ in centers], axis=1)

# Underfitting (kevés bazis)

centers under = np.linspace(0, 1, 3)

Phi under = design matrix(x_train, centers under, 0.3)

Phi under test = design matrix(x test, centers under, 0.3)
w_under = np.linalg.lstsq(Phi under, y train, rcond=None)[0]
y under pred = Phi under test @ w _under

# Overfitting (sok bazis)

centers over = np.linspace(0, 1, 15)

Phi over = design matrix(x train, centers over, 0.05)

Phi over test = design matrix(x test, centers over, 0.05)
w_over = np.linalg.lstsq(Phi over, y train, rcond=None)[0]
y over pred = Phi over test @ w over

# Abra

plt.figure(figsize=(10, 6))

plt.plot(x test, y true, color='black', linewidth=2, label='Valédi
flggvény')

plt.plot(x test, y under pred, color='blue', linestyle='--"',
label='Underfitting (kevés bdzis)')

plt.plot(x test, y over pred, color='red', linestyle='--',
label='0verfitting (sok bazis)')

plt.scatter(x train, y train, color='black', label='Tanitéadatok')
plt.title("Underfitting és overfitting példaja")

plt.legend()

plt.grid(True)

plt.tight layout()

plt.show()

A gépi tanulasi modellek fo tipusai

A gépi tanuldsi modelleket hdrom nagy csoportba sorolhatjuk a tanulds célja és a kimenet jellege
alapjan:

Regresszio

A regresszios feladat célja egy folytonos mennyiség becslése. llyenkor a modell egy bemenethez \(
x \in \mathbb{R}”~d\) tartozé kimeneti értéket \( y \in \mathbb{R} "~k \) prébal megjdsolni.
Példak:

e Egy targy térbeli pozicidjanak becslése egy képbdl.
e Egy hémérséklet vagy haz aranak elérejelzése.
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Osztalyozas (klasszifikacio)

Osztalyozas soran a cél az, hogy a modell egy véges szamu lehetséges cimke (osztaly) kozul
valasszon ki egyet egy adott bemenethez. Azaz:

$$ y\in\{1, 2, \ldots, C\} $$

A modell altalaban nem kdzvetlenil egy cimkét ad vissza, hanem pontszamokat vagy
valdszinliségeket rendel minden lehetséges osztalyhoz:

$$ f(x; w) = \text{softmax}(s_1, s 2, \ldots, s C) $$
ahol \(s_i\) a\(i\)-edik osztalyhoz tartoz6 nyers pontszam. A predikcio:
$$ \hat{y} = \arg\max_{i} f_i(x; w) $$

A tanitéadat itt is \( (x_n, y_n)\) parokbdl all, de a \( y_n\) most egy osztalyindex.
Sdriségmodellezés

A harmadik kategéria a sliriiségmodellezés, amelynek célja nem kimeneti érték el6rejelzése,
hanem maganak az adatnak a valdszinliségi eloszlasat megtanulni:

$$ p(x) \approx \hat{p}(x; w) $$

llyenkor csak \( x_n'\) példak allnak rendelkezésre (nincs hozzajuk tartozé \( y _n\)), és a modell azt
probalja megtanulni, mennyire jellemzéek az egyes mintak, vagy hogyan lehet ij mintakat
generalni az eloszlasbdl.

Jellegzetes célfliggvény itt az eloszlas log-likelihood maximaldsa:

$$ \mathcal{L}(w) = -\frac{1}{N} \sum_{n=1}"~N\log \hat{p}(x_n; w) $$

/IFeliigyelt// és //feligyelet nélkiili// tanulas

e A regresszié és osztalyozas esetén mindig sziikség van egy célértékre (\(y\)), ezért ezeket
feligyelt tanulasnak nevezzik.
e A slrlségmodellezés soran nincs célérték, csak maga az \( x \) szerepel, ezért ez a feliigyelet

Yar4

Megjegyzés

Ezek a kategdriak nem zarjak ki egymast. Példaul:

e Osztalyozas megvaldsithatd regresszids formaban is (pontszamokat tanulunk).

 Slrliségmodellezésbdl szarmaztathatunk osztalyozét (pl. Bayes-szabaly szerint).

» Léteznek 0sszetett modellek, amelyek tobbféle célt is egyszerre tanulnak (pl. képgeneralas és
cimkézés egytt).
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