
2026/02/16 12:04 1/10 Gépi tanulás

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Gépi tanulás

Hétköznapi szóhasználatban a tanulás azt jelenti, hogy egy feladat megoldásához
szabályokat találunk, vagy fedezünk fel. Például egy kisgyermek megtanulhatja, hogy a
madaraknak van szárnyuk, és képesek repülni – anélkül, hogy ezt valaki pontos szabályok formájában
elmagyarázná neki. A gyerek megfigyelései alapján felismeri a jellemző mintákat és kapcsolatokat, és
ez alapján képes új esetekre is következtetni.

Formálisan tekintve, a gépi tanulás célja olyan függvény megtalálása, amely egy bemeneti adat �
alapján megbízhatóan becsli a hozzá tartozó kimenetet �. Például ha a bemenet egy rendszámtáblát
ábrázoló kép, a kimenet a rajta olvasható szöveg lesz.

Ahhoz, hogy ez megvalósuljon, először is összegyűjtünk egy tanítóhalmazt, amely bemeneti és
kimeneti adatpárokat tartalmaz:

$$ \mathcal{D} = \{(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\} $$

Ezután definiálunk egy paraméteres modellt \(f(x; w) \), ahol:

\(f \) egy függvény (pl. neurális hálózat),
\(w \) a tanulható paraméterek összessége (súlyok),

cél, hogy \(f(x_i; w) \approx y_i \) legyen, azaz tetszőlegesen kiválasztott adatpár bemenetére \(x_i\),
az \(y_i\) kimenetet adja.

A tanulás célja

A tanulás célja az optimális \(w^* \) paraméter megtalálása, amely mellett a modell jól teljesít. A
modell jóságát (teljesítményét) veszteségfüggvény segítségével mérjük:

$$ \mathcal{L}(w) = \frac{1}{N} \sum_{n=1}^N \ell(y_n, f(x_n; w)) $$

ahol \(\ell \) például lehet a négyzetes hiba, aminek egyik bemenete a tanító halmaz \(y\)
kimenetének értékéből kivonja, a modell által számolt \(\hat{y}\) kimenetet és ennek a különbségnek
veszi a négyezetét:

$$ \ell(y, \hat{y}) = (y - \hat{y})^2 $$

Ilyenkor a \(\ell \) veszteségfüggvény értéke a négyzetes hibák átlaga. Behelyettesítve:

$$ \mathcal{L}(w) = \frac{1}{N} \sum_{n=1}^N (y_n - f(x_n; w))^2 $$

A tanulás célja, hogy megtaláljuk azt a paraméterbeállítást, amely a lehető legjobban teljesít. Ez azt
jelenti, hogy olyan súlyokat (paramétereket) keresünk, amelyek a lehető legkisebb hibát
eredményezik a tanítóadatokon.

Másként fogalmazva: a tanulás során azt a súlyvektort szeretnénk megtalálni \(w^*\), amely
minimalizálja a veszteségfüggvényt — vagyis azt, amely mellett a modell becslései a lehető
legközelebb esnek a tényleges válaszokhoz az összes tanítópéldára nézve.

Last update:
2025/05/22 11:06 muszaki_informatika:gepi_tanulas https://edu.iit.uni-miskolc.hu/muszaki_informatika:gepi_tanulas?rev=1747912010

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:04

$$ w^* = \arg\min_w \mathcal{L}(w) $$

Ez a megközelítés számos alkalmazás alapját képezi: képfelismerés, szövegértés, hangfeldolgozás,
játékstratégia stb. A modell nem szabályokat programozva működik, hanem adatokból „tanul meg”
viselkedni.

Példa: Egyszerű lineáris modell tanulása

Tegyük fel, hogy a modellünk (becslő függvény) így néz ki:

$$ f(x; w) = wx $$

és két tanítópéldánk van:

(1, 2)
(2, 4)

A cél, hogy olyan \(w \) súlyt találjunk, amely a következő veszteségfüggvényt minimalizálja:

$$ \mathcal{L}(w) = \frac{1}{2}[(2 - w \cdot 1)^2 + (4 - w \cdot 2)^2] $$

Ez a függvény azt méri, hogy adott \(w \) esetén mekkora hibát követ el a modell. Az alábbi ábrán
látható a veszteségfüggvény alakja, valamint a minimumhely:

A minimális veszteség \(\mathcal{L}(w) \approx 0.00 \)
A hozzá tartozó optimális súly: \(w^* = 2.01 \)

Példa: Összetettebb modell

Legyen a modell több paraméteres:

$$f(x; w) = \sum_{k=1}^K w_k f_k(x)$$

https://edu.iit.uni-miskolc.hu/_detail/muszaki_informatika:pasted:20250521-104730.png?id=muszaki_informatika%3Agepi_tanulas

2026/02/16 12:04 3/10 Gépi tanulás

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

ahol:

\(f_k(x)\) előre definiált bázisfüggvények (pl. Gauss-görbék, szinuszok, polinomok stb.)

Fekete pontok: zajos tanítóadatok \((x_n, y_n) \)
Kék görbék: a 10 darab Gauss-alakú bázisfüggvény \(f_k(x)\)
Piros görbe: a tanult függvény \(f(x; w^*) = \sum w_k f_k(x) \)

A modell megtanulta, milyen súlyokkal (\(w\)-kel) kombinálja a bázisfüggvényeket úgy, hogy a piros
görbe minél jobban kövesse a tanítóadatokat, azaz minimalizálja a négyzetes hibát.

A következő Python program hozta létre a fenti ábrát.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from scipy.linalg import solve

1. Tanítóadat generálása (zajos szinuszgörbe)
np.random.seed(42)
N = 30
x_train = np.linspace(0, 1, N)
y_train = np.sin(2 * np.pi * x_train) + 0.1 * np.random.randn(N)

2. Bázisfüggvények: Gauss-görbék
K = 10 # Bázisfüggvények száma
centers = np.linspace(0, 1, K)
width = 0.1

def gaussian_basis(x, c, s):

https://edu.iit.uni-miskolc.hu/_detail/muszaki_informatika:pasted:20250521-110015.png?id=muszaki_informatika%3Agepi_tanulas

Last update:
2025/05/22 11:06 muszaki_informatika:gepi_tanulas https://edu.iit.uni-miskolc.hu/muszaki_informatika:gepi_tanulas?rev=1747912010

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:04

 return np.exp(-0.5 * ((x - c)/s)**2)

3. Design mátrix Φ (N x K)
Phi = np.stack([gaussian_basis(x_train, c, width) for c in centers], axis=1)

4. Optimális súlyok kiszámítása (normálegyenlet)
Φ w = y => w = (ΦᵗΦ)⁻¹ Φᵗ y
w_star = solve(Phi.T @ Phi, Phi.T @ y_train)

5. Kiértékelés új pontokon
x_test = np.linspace(0, 1, 200)
Phi_test = np.stack([gaussian_basis(x_test, c, width) for c in centers],
axis=1)
y_pred = Phi_test @ w_star

6. Eredmény kirajzolása
plt.figure(figsize=(10, 6))
for k in range(K):
 plt.plot(x_test, Phi_test[:, k], '--', color='blue', alpha=0.3) #
bázisfüggvények

plt.plot(x_test, y_pred, color='red', label='Lineáris kombináció (becslés)')
plt.scatter(x_train, y_train, color='black', label='Tanítóadatok')
plt.title("Basis function regression Gaussian bázisfüggvényekkel")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()

Underfitting és overfitting (gyenge és túlzott illeszkedés)

A modell kapacitása és a rendelkezésre álló tanítóadatok mennyiségének viszonya fontos szerepet
játszik a tanulás sikerességében.

Ha a modell túl egyszerű (kevés paramétert vagy kevés bázisfüggvényt használ), akkor nem lesz
elég rugalmas ahhoz, hogy megtanulja az adatok mögötti összefüggéseket. Ez az eset az
underfitting (gyenge illeszkedés): a modell nem tud alkalmazkodni még a tanítóadatokhoz sem, és
mind a tanító-, mind a tesztpéldákon nagy hibát vét.

Ezzel szemben, ha a modell túl bonyolult (pl. túl sok paraméterrel dolgozik), akkor hajlamos arra,
hogy a tanítóadatokra túlzottan “ráilleszkedjen”. Ez az overfitting (túlzott illeszkedés), amely során a
modell tökéletesen teljesít a tanítóhalmazon, de új, ismeretlen adatokra gyengén általánosít.
Megtanulja a tanító halmazban lévő “zajt”, pl. az esetleges hibás vagy kiugró értékeket is.

Az alábbi ábra ezt a jelenséget szemlélteti:

A fekete vonal a valódi (ismeretlen) függvény, amely szerint az adatok keletkeztek.
A fekete pontok a tanítópéldák.

2026/02/16 12:04 5/10 Gépi tanulás

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

A kék szaggatott görbe egy túl egyszerű modell (underfitting): nem tudja követni a mintát.
A piros szaggatott görbe egy túltanult modell (overfitting): jól illeszkedik a pontokra, de a valódi
görbétől eltér.

Olyan modellt érdemes tervezni, amely épp elég rugalmas ahhoz, hogy meg tudja tanulni az adatok
szerkezetét, de nem annyira rugalmas, hogy a véletlen zajokat is megtanulja.

A következő program hozza létre a fenti ábrát:

import numpy as np
import matplotlib.pyplot as plt

Valódi (rejtett) függvény
def true_function(x):
 return np.sin(2 * np.pi * x)

Tanítóadat
np.random.seed(1)
x_train = np.linspace(0, 1, 7)
y_train = true_function(x_train) + 0.1 * np.random.randn(len(x_train))

Teszteléshez sűrű intervallum
x_test = np.linspace(0, 1, 300)
y_true = true_function(x_test)

Gauss bázisfüggvények
def gaussian_basis(x, c, s):
 return np.exp(-0.5 * ((x - c)/s)**2)

def design_matrix(x, centers, width):

https://edu.iit.uni-miskolc.hu/_detail/muszaki_informatika:pasted:20250522-101556.png?id=muszaki_informatika%3Agepi_tanulas

Last update:
2025/05/22 11:06 muszaki_informatika:gepi_tanulas https://edu.iit.uni-miskolc.hu/muszaki_informatika:gepi_tanulas?rev=1747912010

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:04

 return np.stack([gaussian_basis(x, c, width) for c in centers], axis=1)

Underfitting (kevés bázis)
centers_under = np.linspace(0, 1, 3)
Phi_under = design_matrix(x_train, centers_under, 0.3)
Phi_under_test = design_matrix(x_test, centers_under, 0.3)
w_under = np.linalg.lstsq(Phi_under, y_train, rcond=None)[0]
y_under_pred = Phi_under_test @ w_under

Overfitting (sok bázis)
centers_over = np.linspace(0, 1, 15)
Phi_over = design_matrix(x_train, centers_over, 0.05)
Phi_over_test = design_matrix(x_test, centers_over, 0.05)
w_over = np.linalg.lstsq(Phi_over, y_train, rcond=None)[0]
y_over_pred = Phi_over_test @ w_over

Ábra
plt.figure(figsize=(10, 6))
plt.plot(x_test, y_true, color='black', linewidth=2, label='Valódi
függvény')
plt.plot(x_test, y_under_pred, color='blue', linestyle='--',
label='Underfitting (kevés bázis)')
plt.plot(x_test, y_over_pred, color='red', linestyle='--',
label='Overfitting (sok bázis)')
plt.scatter(x_train, y_train, color='black', label='Tanítóadatok')
plt.title("Underfitting és overfitting példája")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()

A gépi tanulási modellek fő típusai

A gépi tanulási modelleket három nagy csoportba sorolhatjuk a tanulás célja és a kimenet jellege
alapján:

Regresszió

A regressziós feladat célja egy folytonos mennyiség becslése. Ilyenkor a modell egy bemenethez \(
x \in \mathbb{R}^d \) tartozó kimeneti értéket \(y \in \mathbb{R}^k \) próbál megjósolni.

Példák:

Egy tárgy térbeli pozíciójának becslése egy képből.
Egy hőmérséklet vagy ház árának előrejelzése.

2026/02/16 12:04 7/10 Gépi tanulás

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Osztályozás (klasszifikáció)

Osztályozás során a cél az, hogy a modell egy véges számú lehetséges címke (osztály) közül
válasszon ki egyet egy adott bemenethez. Azaz:

$$ y \in \{1, 2, \ldots, C\} $$

A modell általában nem közvetlenül egy címkét ad vissza, hanem pontszámokat vagy
valószínűségeket rendel minden lehetséges osztályhoz:

$$ f(x; w) = \text{softmax}(s_1, s_2, \ldots, s_C) $$

ahol \(s_i \) a \(i \)-edik osztályhoz tartozó nyers pontszám. A predikció:

$$ \hat{y} = \arg\max_{i} f_i(x; w) $$

A tanítóadat itt is \((x_n, y_n) \) párokból áll, de a \(y_n \) most egy osztályindex.

Sűrűségmodellezés

A harmadik kategória a sűrűségmodellezés, amelynek célja nem kimeneti érték előrejelzése,
hanem magának az adatnak a valószínűségi eloszlását megtanulni:

$$ p(x) \approx \hat{p}(x; w) $$

Ilyenkor csak \(x_n \) példák állnak rendelkezésre (nincs hozzájuk tartozó \(y_n \)), és a modell azt
próbálja megtanulni, mennyire jellemzőek az egyes minták, vagy hogyan lehet új mintákat
generálni az eloszlásból.

Jellegzetes célfüggvény itt az eloszlás log-likelihood maximálása:

$$ \mathcal{L}(w) = -\frac{1}{N} \sum_{n=1}^N \log \hat{p}(x_n; w) $$

Felügyelt és felügyelet nélküli tanulás

A regresszió és osztályozás esetén mindig szükség van egy célértékre (\(y \)), ezért ezeket
felügyelt tanulásnak nevezzük.
A sűrűségmodellezés során nincs célérték, csak maga az \(x \) szerepel, ezért ez a felügyelet
nélküli tanulás kategóriájába soroljuk.

Megjegyzés

Ezek a kategóriák nem zárják ki egymást. Például:

Osztályozás megvalósítható regressziós formában is (pontszámokat tanulunk).
Sűrűségmodellezésből származtathatunk osztályozót (pl. Bayes-szabály szerint).
Léteznek összetett modellek, amelyek többféle célt is egyszerre tanulnak (pl. képgenerálás és
címkézés együtt).

Last update:
2025/05/22 11:06 muszaki_informatika:gepi_tanulas https://edu.iit.uni-miskolc.hu/muszaki_informatika:gepi_tanulas?rev=1747912010

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:04

Hatékony számítási módszerek

A modern gépi tanulási modellek gyakorlati megvalósítása és alkalmazása, szorosan összefügg a
hatékony számítási megoldásokkal. Ezek a modellek hatalmas adathalmazokon dolgoznak, így a
háttérben zajló számításokat olyan eszközökön érdemes végrehajtani, amelyek párhuzamosan
képesek nagy mennyiségű művelet elvégzésére.

GPU-k, TPU-k és batch feldolgozás

A legtöbb mélytanulási számítás grafikus feldolgozóegységek (GPU-k) segítségével történik.
Ezeket eredetileg képfeldolgozásra tervezték, de mivel képesek több ezer szálon párhuzamos
számításokat végezni, kiválóan alkalmasak a gépi tanulás modelljeinek betanítására és futtatására
is.

A GPU-k saját gyors memóriával rendelkeznek, amelyben az adatokat és a modell súlyait is tárolni
lehet. A legnagyobb lassulást (szűk keresztmetszet) általában az okozza, ha az adatokat a CPU
memóriájából át kell másolni a GPU-ba. Ezért fontos, hogy a számításokat úgy szervezzük, hogy az
adatok a GPU memóriájában maradjanak.

A hatékony működés érdekében az adatokat gyakran batch-ekre (kötegekre) osztjuk, vagyis
egyszerre több mintát dolgozunk fel. A GPU szinte ugyanolyan gyorsan képes feldolgozni egy batch-
et, mint egyetlen mintát, mivel a szűk keresztmetszet ilyenkor is a GPU-ba történő adatbetöltés
marad.

Egy tipikus GPU elméleti teljesítménye:

$$ 10^{13} \text{ – } 10^{14} \text{ FLOP/s (floating point művelet másodpercenként)} $$

A lebegőpontos számokat jellemzően 32 biten (FP32) tároljuk, de sok esetben 16 bites (FP16) vagy
kisebb pontosság is elegendő, ami még tovább gyorsíthatja a számítást. FP16-os tárolással közel
kétszeres sebességnövekedés érhető el, az FP32-vel szemben.

Tenzorok használata

A mélytanulási könyvtárak, mint a PyTorch vagy a JAX, a számításokat tenzorokkal végzik. Egy
tenzor nem más, mint egy tömb, amely elemei (számok) több dimenzió mentén vannak elrendezve. A
vektorok és mátrixok a tenzorok speciális esetei:

$$ \text{Vektor: } \mathbb{R}^n, \quad \text{Mátrix: } \mathbb{R}^{n \times m}, \quad
\text{Tenzor: } \mathbb{R}^{N_1 \times N_2 \times \dots \times N_k} $$

A tenzorokkal reprezentáljuk:

a bemeneti adatokat (pl. képek, hangminták),
a modell paramétereit (súlyok),
a rejtett rétegek aktivációit.

Példák:

2026/02/16 12:04 9/10 Gépi tanulás

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Egy RGB kép (64 pixel × 64 pixel): \(\mathbb{R}^{3 \times 64 \times 64} \)
32 ilyen kép: \(\mathbb{R}^{32 \times 3 \times 64 \times 64} \)

A népszerű mélytanulási könyvtárak lehetővé teszik ezek formátumának gyors átalakítását
(tenzorátalakításokat).

Példák tenzorátalakításokra

Dimenziók átrendezése (transpose)

Ha van egy mátrixunk:

$$ A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \in \mathbb{R}^{2 \times 3} $$

A transzponáltja:

$$ A^\top = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \in \mathbb{R}^{3 \times 2} $$

PyTorch-ban:

A = torch.tensor([[1, 2, 3],
 [4, 5, 6]])
A_T = A.T # vagy A.transpose(0, 1)

Szeletek kivágása

Tegyük fel, hogy van egy 3×4-es mátrix, és csak az első két oszlopra van szükségünk:

$$ B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix} $$

Kivágva az első két oszlop:

$$ B[:, 0:2] = \begin{bmatrix} 1 & 2 \\ 5 & 6 \\ 9 & 10 \end{bmatrix} $$

PyTorch-ban:

B = torch.arange(1, 13).reshape(3, 4)
slice = B[:, 0:2] # minden sor, az első két oszlop

Sorozatok kibontása (reshape)

Egy hosszú vektor:

$$ v = [1, 2, 3, 4, 5, 6] \in \mathbb{R}^6 $$

Ezt átalakíthatjuk egy 2 soros, 3 oszlopos mátrixszá:

Last update:
2025/05/22 11:06 muszaki_informatika:gepi_tanulas https://edu.iit.uni-miskolc.hu/muszaki_informatika:gepi_tanulas?rev=1747912010

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:04

$$ \text{reshape: } \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \in \mathbb{R}^{2 \times
3} $$

PyTorch-ban:

v = torch.tensor([1, 2, 3, 4, 5, 6])
reshaped = v.reshape(2, 3)

Ezek a műveletek gyakran memóriamásolás nélkül végrehajthatók, ami különösen hatékonnyá
teszi őket. A modern mélytanulási rendszerek tervezése során a tenzoros reprezentáció fontos
követelmén. Ha a számításokat tenzoros formában szervezzük meg, akkor ez lehetővé teszi a
hatékony párhuzamos végrehajtást. Minden szint – a modell, a programkönyvtár, a hardver –
kompatibilis kell legyen ezzel a reprezentációval. A tenzoros struktúra támogatja a memóriabeli
lokalitást, vagyis a gyakran használt adatok közel maradnak egymáshoz a memóriában, ezáltal
gyorsabb az elérésük.

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of
Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/muszaki_informatika:gepi_tanulas?rev=1747912010

Last update: 2025/05/22 11:06

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/muszaki_informatika:gepi_tanulas?rev=1747912010

	[Gépi tanulás]
	Gépi tanulás
	A tanulás célja
	Példa: Egyszerű lineáris modell tanulása
	Példa: Összetettebb modell
	Underfitting és overfitting (gyenge és túlzott illeszkedés)
	A gépi tanulási modellek fő típusai
	Regresszió
	Osztályozás (klasszifikáció)
	Sűrűségmodellezés
	Felügyelt és felügyelet nélküli tanulás
	Megjegyzés

	Hatékony számítási módszerek
	GPU-k, TPU-k és batch feldolgozás
	Tenzorok használata
	Példák tenzorátalakításokra
	Dimenziók átrendezése (transpose)
	Szeletek kivágása
	Sorozatok kibontása (reshape)

