
2025/10/03 11:26 1/3 Mátrix szorzás gyorsítása

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Mátrix szorzás gyorsítása

A mátrixszorzás gyorsítása C-ben többféle módon lehetséges. Az alábbiakban bemutatunk néhány
optimalizálási technikát:

Optimális sorrend

A hagyományos mátrixszorzás három beágyazott ciklusból áll (i, j, k sorrendben). Azonban a
memóriaelérés optimalizálásával (pl. oszlopok helyett sorok szerint haladás) jelentősen növelhetjük a
sebességet.

void multiplyMatrices(int **A, int **B, int **C, int N) {
 for (int i = 0; i < N; i++) {
 for (int k = 0; k < N; k++) { // Megváltoztatott sorrend
 int r = A[i][k];
 for (int j = 0; j < N; j++) {
 C[i][j] += r * B[k][j]; // Csökkentett memóriahozzáférés
 }
 }
 }
}

Miért gyorsabb?

Az A mátrix sorait gyorsabban beolvassuk a CPU gyorsítótárba (cache).
Az előre kiszámított r változó csökkenti az A[i][k] memória-hozzáférését.

Blokkosítás

A blokkosított mátrixszorzás során a mátrixokat kisebb blokkokra bontjuk, és ezeket a blokkokat
külön-külön számoljuk ki, így kihasználva a CPU gyorsítótárát.

$$ A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16
\end{bmatrix}$$

$$ B = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0
\end{bmatrix}$$

A fenti mátrixokat 2×2-es blokkokra bontjuk, tehát így:

$$ A = \begin{bmatrix} \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix} & \begin{bmatrix} 3 & 4 \\ 7 &
8 \end{bmatrix} \\ \begin{bmatrix} 9 & 10 \\ 13 & 14 \end{bmatrix} & \begin{bmatrix} 11 & 12 \\ 15
& 16 \end{bmatrix} \end{bmatrix}$$

$$ B = \begin{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} 0 & 1 \\ 1 &
0 \end{bmatrix} \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} 0 & 1 \\ 1 & 0

Last update:
2025/02/12
10:29

muszaki_informatika:matrix_szorzas_gyorsitasa https://edu.iit.uni-miskolc.hu/muszaki_informatika:matrix_szorzas_gyorsitasa

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/03 11:26

\end{bmatrix} \end{bmatrix}$$

Mátrix szorzása blokkonként

$$ C_{ij} = \sum_{k} A_{ik} \cdot B_{kj} $$

Ahol minden C blokk a megfelelő A és B blokkok szorzataként adódik.

Első blokk (C₁₁): $$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$ $$ \begin{bmatrix} 1 &
2 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 3 & 4
\\ 7 & 8 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Számoljuk ki az egyes részmátrixok szorzatát:

$$ \begin{bmatrix} 1\cdot1 + 2\cdot0 & 1\cdot0 + 2\cdot1 \\ 5\cdot1 + 6\cdot0 & 5\cdot0 + 6\cdot1
\end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 3\cdot1 + 4\cdot0 & 3\cdot0 + 4\cdot1 \\ 7\cdot1 + 8\cdot0 & 7\cdot0 + 8\cdot1
\end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 7 & 8 \end{bmatrix}$$

Összeadva: $$ \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix} + \begin{bmatrix} 3 & 4 \\ 7 & 8
\end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 12 & 14 \end{bmatrix}$$

Végeredmény

Hasonlóan számolva az összes blokkra ez lesz a végeredmény:

$$ C = \begin{bmatrix} 4 & 6 & 4 & 6 \\ 12 & 14 & 12 & 14 \\ 20 & 22 & 22 & 20 \\ 28 & 30 & 30 & 28
\end{bmatrix} $$

Miért gyorsabb ez a módszer?

Cache-hatékonyság: Egy blokk adatai könnyebben beleférnek a CPU gyorsítótárába.
Kevesebb memória-hozzáférés: A kisebb méretű részmátrixok többször felhasználhatók anélkül,
hogy újra és újra be kellene tölteni a RAM-ból.
Jól párhuzamosítható: Az egyes blokkok párhuzamosan is számolhatók több CPU magon vagy
GPU-n.

C implementáció:

void multiplyMatricesBlocked(int A[N][N], int B[N][N], int C[N][N]) {
 // Eredménymátrix nullázása
 for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 C[i][j] = 0;
 }
 }

2025/10/03 11:26 3/3 Mátrix szorzás gyorsítása

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 // Blokkosított szorzás
 for (int bi = 0; bi < N; bi += BLOCK_SIZE) {
 for (int bj = 0; bj < N; bj += BLOCK_SIZE) {
 for (int bk = 0; bk < N; bk += BLOCK_SIZE) {

 // Blokkon belüli műveletek
 for (int i = bi; i < bi + BLOCK_SIZE; i++) {
 for (int j = bj; j < bj + BLOCK_SIZE; j++) {
 for (int k = bk; k < bk + BLOCK_SIZE; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
 }
 }
 }
 }
}

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of
Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/muszaki_informatika:matrix_szorzas_gyorsitasa

Last update: 2025/02/12 10:29

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/muszaki_informatika:matrix_szorzas_gyorsitasa

	[Mátrix szorzás gyorsítása]
	[Mátrix szorzás gyorsítása]
	Mátrix szorzás gyorsítása
	Optimális sorrend
	Blokkosítás
	Mátrix szorzása blokkonként
	Végeredmény

