
2026/02/16 09:02 1/13 Neurális hálók

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Neurális hálók

Neuron modellezése

Az alábbi képen a biológiai neuront és annak mesterséges intelligencia modellekben használt
analógját látjuk. A biológiai neuron az emberi agy alapvető építőeleme, amely információkat dolgoz
fel és továbbít más neuronok felé. A neuron dendritekkel rendelkezik, amelyek a környező
neuronoktól érkező jeleket fogadják. Ezeket a jeleket a sejt (amelyben a mag található) dolgozza fel,
majd továbbküldi az axonon keresztül. Az axon végén található axon-végződések szinapszisokon
keresztül kapcsolódnak más neuronokhoz, így biztosítva az információáramlást.

A mesterséges neuron, a fenti biológiai modell alapján működik, leegyszerűsítve annak alapvető
működését. A mesterséges neuron bemeneteket fogad, amelyeket (matematikailag) súlyoz (ezzel
vezérli a bemenet fontosságát), majd összegez. Az így kapott értéken egy aktivációs függvényt futtat,
amely meghatározza, hogy a neuron “tüzel-e”, azaz továbbküldi-e a jelet. Az aktivációs függvény
eredménye képezi a neuron kimenetét, amelyet továbbít a hálózat következő rétegeinek.

Hálózati Modell

Az alábbi kép egy mesterséges neurális hálózat egyszerű modelljét ábrázolja.

A hálózat bemeneti réteggel indul, amely a zöld színű x₁ és x₂ elemeket tartalmazza. Ezek a bemeneti
változók képviselik azokat az adatokat, amelyeket a modell feldolgoz. A bemeneteket súlyokkal
szorozzák, majd átadják a rejtett rétegek neuronjaiba, amelyeket a kék színű z₁, z₂ és z₃ jelöl.

A rejtett réteg(ek)ben minden neuron kiszámítja a saját kimenetét egy aktivációs függvény

https://edu.iit.uni-miskolc.hu/_detail/muszaki_informatika:pasted:20241204-174210.png?id=muszaki_informatika%3Aneuralis_halok_alapjai
https://edu.iit.uni-miskolc.hu/_detail/muszaki_informatika:pasted:20241205-084026.png?id=muszaki_informatika%3Aneuralis_halok_alapjai

Last
update:
2025/03/13
22:56

muszaki_informatika:neuralis_halok_alapjai https://edu.iit.uni-miskolc.hu/muszaki_informatika:neuralis_halok_alapjai?rev=1741906602

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

(https://en.wikipedia.org/wiki/Activation_function) segítségével, amely a bemeneti jelek összegét
alakítja át (nemlineáris módon). Ezek a kimenetek aztán tovább haladnak a következő rétegekbe (a
példában csak 1 rejtett réteget használunk, ezért itt nincs továbbadás), míg végül elérik a kimeneti
réteget, amelyet itt az y_pred (y predikció) narancssárga elem jelöl.

Az y_pred a modell végső előrejelzése, egy számérték, amely például egy osztályozási vagy
regressziós (közelítési) probléma megoldásaként jelenik meg.

Ez az ábra segít megérteni a neurális hálózatok alapvető működési elvét: a bemenetek fokozatos
átalakulását a különböző rétegeken keresztül, amelyek végül egy konkrét kimeneti értékhez
vezetnek. Ezt a folyamatot a gépi tanulás során finoman hangolják (optimalizálják), például
visszaterjesztés (backpropagation) és gradienscsökkentés (gradient descent) segítségével, hogy a
modell pontos előrejelzéseket tudjon adni.

Ha egy kép a bement, akkor a pixeleit sorban is be lehet adni a hálónak (nem vesszük figyelembe,
hogy a kép téglalap). A finomhangolás során - a bemutatott minták alapján - a háló megtanulja a
pixelek közötti összefüggéseket, és választ tud majd adni, hogy mosolyog-e a képen látható személy,
egy olyan képen is, amit korábban nem mutattak meg a hálónak (a modellnek). Megjegyzés: olyan
modellek természetesen jobban működnek, amik figyelembe veszik a szomszédos pixeleket is (pl.
konvolúciós hálok).

Az ábrán, a fully-connected layer azt jelenti, hogy a minden bementi neuron minden a következő
réteg minden neuronjával össze van kapcsolva.

https://en.wikipedia.org/wiki/Activation_function
https://edu.iit.uni-miskolc.hu/_detail/digitalis_technologiak_ikt_technologiak:pasted:20241118-190513.png?id=muszaki_informatika%3Aneuralis_halok_alapjai

2026/02/16 09:02 3/13 Neurális hálók

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Neurális háló, mint osztályozó - Generatív hálók

Az alábbi link a számok felismerését teszi láthatóvá: https://adamharley.com/nn_vis/

Az alábbi linken bemutatjuk, hogyan működik az osztályozás? Autoencoder és generatív modellek.

http://showroom.iit.uni-miskolc.hu/gans

Interaktív neurális háló szimulátor: https://dcato98.github.io/playground/

Modell paramétereinek kiszámítása

A neurális hálót, az összeköttetéseihez rendelt súlyok segítségével tudjuk használni. A bementből és a
rejtett réteg két neuronjának \(z_1\) és \(z_2\) értékét az alábbi képlettel számolhatjuk:

$$ z_1 = x_1 \cdot w_{11} + x_2 \cdot w_{21} $$ $$ z_2 = x_1 \cdot w_{12} + x_2 \cdot w_{22} $$

A rejtett réteg teljesen összekötött (fully connected), ezért minden bemenet kapcsolódik minden
rejtett neuronhoz.

https://edu.iit.uni-miskolc.hu/_detail/digitalis_technologiak_ikt_technologiak:pasted:20241118-190801.png?id=muszaki_informatika%3Aneuralis_halok_alapjai
https://adamharley.com/nn_vis/
http://showroom.iit.uni-miskolc.hu/gans
https://dcato98.github.io/playground/
https://edu.iit.uni-miskolc.hu/_detail/muszaki_informatika:pasted:20241205-084026.png?id=muszaki_informatika%3Aneuralis_halok_alapjai

Last
update:
2025/03/13
22:56

muszaki_informatika:neuralis_halok_alapjai https://edu.iit.uni-miskolc.hu/muszaki_informatika:neuralis_halok_alapjai?rev=1741906602

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

A következő kimeneti réteg \(z_3 = y_{pred}\) értékét, ami egyetlen neuronból áll így számíthatjuk:

$$ z_3 = z_1 \cdot w_{31} + z_2 \cdot w_{32} $$

Egyben ez lesz a háló előrejelzése \(y_{\text{pred}}\). Ezt a fenti műveletet forward pass-nak
nevezzük.

Mátrixok alkalmazása háló modellekben

Az egységesítés és a könnyebb kezelhetőség miatt, a fenti képleteket mátrixos és vektoros formában
is felírhatjuk:

Rejtett réteg súlymátrixa: \(W_1 = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22}
\end{bmatrix}\)

A kimeneti réteg vektor: \(W_2 = \begin{bmatrix} w_{31} \\ w_{32} \end{bmatrix}\)

Bemeneti és rejtett réteg vektorok: \(\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} , \quad
\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}\)

Ezek alapján a rejtett réteget a bement és a súlymátrix alapján így számolhatjuk:

$$ \mathbf{z} = W_1 \cdot \mathbf{x} $$ behelyettesítve: $$ \begin{bmatrix} z_1 \\ z_2
\end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \cdot
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} $$

A kimenet eredménye egy számérték (skalár) lesz:

$$ y_{\text{pred}} = \begin{bmatrix} w_{31} \\ w_{32} \end{bmatrix} \cdot \begin{bmatrix} z_1 \\
z_2 \end{bmatrix}$$

Teljes mátrixos formában:

$$ y_{\text{pred}} = W_2 \cdot W_1 \cdot \mathbf{x} $$

Példa konkrét számértékekkel (forward pass)

Tegyük fel hogy:

$$ W_1 = \begin{bmatrix} 0.5 & 0.3 \\ 0.2 & 0.7 \end{bmatrix} , \quad W_2 = \begin{bmatrix} 0.6 \\
0.4 \end{bmatrix} , \quad \mathbf{x} = \begin{bmatrix} 0.8 \\ 0.6 \end{bmatrix}$$

Rejtett réteg számítása:

$$ \mathbf{z} = \begin{bmatrix} 0.5 & 0.3 \\ 0.2 & 0.7 \end{bmatrix} \cdot \begin{bmatrix} 0.8 \\
0.6 \end{bmatrix} = \begin{bmatrix} (0.5 \cdot 0.8 + 0.3 \cdot 0.6) & (0.2 \cdot 0.8 + 0.7 \cdot 0.6)
\end{bmatrix} = \begin{bmatrix} 0.58 \\ 0.58 \end{bmatrix}$$

Kimeneti réteg számítása:

2026/02/16 09:02 5/13 Neurális hálók

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

$$ y_{\text{pred}} = \begin{bmatrix} 0.58 \\ 0.58 \end{bmatrix} \cdot \begin{bmatrix} 0.6 \\ 0.4
\end{bmatrix} = (0.52 \cdot 0.6 + 0.66 \cdot 0.4) = 0.58 $$

A súlyok módosítása a hiba függvényében

“Loss” a neurális háló teljesítményének mérésére szolgáló függvény, amely azt jelzi, hogy a háló által
számolt kimenetek mennyire térnek el a várt kimenetektől.

$$ \text{Loss} = \frac{1}{2} (y - y_{pred})^2 $$

Loss Deriváltja a Kimeneti Réteg Súlyaira

A back-propagation során a Loss függvény deriváltját (gradiensét) használjuk a súlyok frissítéséhez.
Mivel a Loss függvény közvetlenül nem függ a súlytól, ezért a láncszabályt kell alkalmazni a
deriváláskor.

$$ \frac{\partial \text{Loss}}{\partial w_{31}} = \frac{\partial \text{Loss}}{\partial
y_{\text{pred}}} \cdot \frac{\partial y_{\text{pred}}}{\partial w_{31}} $$ $$ \frac{\partial
\text{Loss}}{\partial w_{32}} = \frac{\partial \text{Loss}}{\partial y_{\text{pred}}} \cdot
\frac{\partial y_{\text{pred}}}{\partial w_{32}} $$

A fenti két derivált kifejezi, hogy a két súly mennyire van hatással a hibára.

1.) Első tényező: \(\frac{\partial \text{Loss}}{\partial y_{\text{pred}}} \) a Loss függvény deriváltja
a \(y_{pred}\)-re:

$$ \frac{\partial \text{Loss}}{\partial y_{\text{pred}}} = -(y_{\text{true}} - y_{\text{pred}}) = -e
$$

ahol \(e = y - y_{\text{pred}} \) a hiba.

2.) Második tényező: \(\frac{\partial y_{\text{pred}}}{\partial w_{31}} \)

Az \(y_{pred}\) függ a rejtett kimenettől \(z_1\):

$$ y_{\text{pred}} = z_1 \cdot w_{31} + z_2 \cdot w_{32} $$

Ezért:

$$ \frac{\partial y_{\text{pred}}}{\partial w_{31}} = z_1 $$

Teljes derivált:

Összekapcsolva a két tényezőt:

$$ \frac{\partial \text{Loss}}{\partial w_{31}} = -e \cdot z_1 $$

Last
update:
2025/03/13
22:56

muszaki_informatika:neuralis_halok_alapjai https://edu.iit.uni-miskolc.hu/muszaki_informatika:neuralis_halok_alapjai?rev=1741906602

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

hasonlóan:

$$ \frac{\partial \text{Loss}}{\partial w_{32}} = -e \cdot z_2 $$

3.) Gradiens a kimeneti súlyokra \(W_2\)

A súlyok gradiensének mátrixos formája:

$$ \Delta W_2 = \begin{bmatrix} \frac{\partial \text{Loss}}{\partial w_{31}} \\ \frac{\partial
\text{Loss}}{\partial w_{32}} \end{bmatrix} = \begin{bmatrix} z_1 \cdot e \\ z_2 \cdot e
\end{bmatrix}$$

A kimeneti réteg hibáját \(e\) visszaterjesztjük a rejtett réteg neuronjaira (\(h_1, h_2\)):

$$ \delta_{\text{hidden}} = \begin{bmatrix} e \cdot w_{31} \\ e \cdot w_{32} \end{bmatrix}$$

Ez a rejtett réteg hibája.

A bemeneti réteg és a rejtett réteg közötti súlyok gradiensét a bemenetek \(x\) és a rejtett réteg
hibájának (\(\delta_{\text{hidden}}\)) szorzata adja:

$$ \Delta W_1 = \begin{bmatrix} x_1 \cdot \delta_{z_1} & x_1 \cdot \delta_{z_2} \\ x_2 \cdot
\delta_{z_1} & x_2 \cdot \delta_{z_2} \end{bmatrix}$$

ahol: \(\delta_{z_1} = e \cdot w_{31}, \quad \delta_{z_2} = e \cdot w_{32} \)

A súlyok frissítését a gradiensek \(\Delta W_1, \Delta W_2\) és a tanulási ráta \(\eta\) segítségével
frissítjük:

$$ W_1 = W_1 - \eta \cdot \Delta W_1 $$ $$ W_2 = W_2 - \eta \cdot \Delta W_2 $$

A teljes eljárás c implementációja:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

// Adatok (bemenetek és várt kimenetek)
#define INPUT_NODES 2
#define HIDDEN_NODES 2
#define OUTPUT_NODES 1
#define SAMPLES 3
#define EPOCHS 1000
#define LEARNING_RATE 0.01

2026/02/16 09:02 7/13 Neurális hálók

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

// Adatok és súlyok inicializálása
double inputs[SAMPLES][INPUT_NODES] = {
 {0.3, 0.1},
 {0.8, 0.6},
 {0.5, 0.5}
};
double expected_outputs[SAMPLES][OUTPUT_NODES] = {
 {0.2},
 {0.7},
 {0.5}
};

// Súlyok
double weights_input_to_hidden[INPUT_NODES][HIDDEN_NODES];
double weights_hidden_to_output[HIDDEN_NODES][OUTPUT_NODES];

// Véletlen szám generálása 0 és 1 között
double random_double() {
 return (double)rand() / RAND_MAX;
}

// Forward pass függvény: Egyetlen minta alapján kiszámítja a kimenetet
void forward_pass(double *input, double *hidden_output, double
*final_output,
 double *weights_input_to_hidden, double
*weights_hidden_to_output) {
 // 1. Bemenet -> Rejtett réteg
 for (int i = 0; i < HIDDEN_NODES; i++) {
 hidden_output[i] = 0.0;
 for (int j = 0; j < INPUT_NODES; j++) {
 hidden_output[i] += input[j] * weights_input_to_hidden[j *
HIDDEN_NODES + i];
 }
 }

 // 2. Rejtett réteg -> Kimeneti réteg
 for (int i = 0; i < OUTPUT_NODES; i++) {
 final_output[i] = 0.0;
 for (int j = 0; j < HIDDEN_NODES; j++) {
 final_output[i] += hidden_output[j] * weights_hidden_to_output[j
* OUTPUT_NODES + i];
 }
 }
}

// Súlyok frissítése
void update_weights(double *weights, double *gradients, int rows, int cols)
{
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < cols; j++) {
 weights[i * cols + j] += LEARNING_RATE * gradients[i * cols +

Last
update:
2025/03/13
22:56

muszaki_informatika:neuralis_halok_alapjai https://edu.iit.uni-miskolc.hu/muszaki_informatika:neuralis_halok_alapjai?rev=1741906602

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

j];
 }
 }
}

int main() {
 // Véletlenszerű súlyok inicializálása
 for (int i = 0; i < INPUT_NODES; i++) {
 for (int j = 0; j < HIDDEN_NODES; j++) {
 weights_input_to_hidden[i][j] = random_double();
 }
 }
 for (int i = 0; i < HIDDEN_NODES; i++) {
 for (int j = 0; j < OUTPUT_NODES; j++) {
 weights_hidden_to_output[i][j] = random_double();
 }
 }

 double hidden_layer_output[HIDDEN_NODES];
 double output[OUTPUT_NODES];
 double error[OUTPUT_NODES];

 // Tanítási ciklus
 for (int epoch = 0; epoch < EPOCHS; epoch++) {
 double total_loss = 0.0;

 for (int sample = 0; sample < SAMPLES; sample++) {
 // 1. Forward pass egy mintára
 forward_pass((double *)inputs[sample], hidden_layer_output,
output,
 (double *)weights_input_to_hidden, (double
*)weights_hidden_to_output);

 // 2. Hibaszámítás
 for (int i = 0; i < OUTPUT_NODES; i++) {
 error[i] = expected_outputs[sample][i] - output[i];
 total_loss += error[i] * error[i];
 }

 // 3. Visszaterjesztés (backpropagation)
 double gradients_hidden_to_output[HIDDEN_NODES][OUTPUT_NODES] =
{0};
 for (int i = 0; i < HIDDEN_NODES; i++) {
 for (int j = 0; j < OUTPUT_NODES; j++) {
 gradients_hidden_to_output[i][j] =
hidden_layer_output[i] * error[j];
 }
 }

2026/02/16 09:02 9/13 Neurális hálók

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 double gradients_input_to_hidden[INPUT_NODES][HIDDEN_NODES] =
{0};
 for (int i = 0; i < INPUT_NODES; i++) {
 for (int j = 0; j < HIDDEN_NODES; j++) {
 double back_error = 0.0;
 for (int k = 0; k < OUTPUT_NODES; k++) {
 back_error += error[k] * weights_hidden_to_output[j
* OUTPUT_NODES + k];
 }
 gradients_input_to_hidden[i][j] = inputs[sample][i] *
back_error;
 }
 }

 // 4. Súlyok frissítése
 update_weights((double *)weights_hidden_to_output, (double
*)gradients_hidden_to_output, HIDDEN_NODES, OUTPUT_NODES);
 update_weights((double *)weights_input_to_hidden, (double
*)gradients_input_to_hidden, INPUT_NODES, HIDDEN_NODES);
 }

 // Hiba kiírása minden epoch után
 if (epoch % 100 == 0) {
 printf("Epoch %d, Loss: %.4f\n", epoch, total_loss / SAMPLES);
 }
 }

 // Eredmények kiírása tanító adatokon
 printf("\nVégső kimenetek tanítás után:\n");
 for (int sample = 0; sample < SAMPLES; sample++) {
 forward_pass((double *)inputs[sample], hidden_layer_output, output,
 (double *)weights_input_to_hidden, (double
*)weights_hidden_to_output);

 printf("Bemenet: [%.2f, %.2f], Várt: %.2f, Kimenet: %.4f\n",
 inputs[sample][0], inputs[sample][1],
expected_outputs[sample][0], output[0]);
 }

 // Tesztelés új bemenetekkel
 double test_inputs[3][INPUT_NODES] = {
 {0.4, 0.6}, // Átlag: 0.5
 {0.2, 0.8}, // Átlag: 0.5
 {0.9, 0.1} // Átlag: 0.5
 };

 printf("\nTeszt kimenetek:\n");
 for (int i = 0; i < 3; i++) {
 forward_pass((double *)test_inputs[i], hidden_layer_output, output,
 (double *)weights_input_to_hidden, (double
*)weights_hidden_to_output);

Last
update:
2025/03/13
22:56

muszaki_informatika:neuralis_halok_alapjai https://edu.iit.uni-miskolc.hu/muszaki_informatika:neuralis_halok_alapjai?rev=1741906602

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

 double expected = (test_inputs[i][0] + test_inputs[i][1]) / 2.0; //
A bemenetek átlaga
 printf("Bemenet: [%.2f, %.2f], Várt (átlag): %.2f, Kimenet: %.4f\n",
 test_inputs[i][0], test_inputs[i][1], expected, output[0]);
 }

 return 0;
}

Generatív nyelvi modellek

A generatív nyelvi modellek az emberi nyelv megértésére és szöveg generálására irányuló kutatások
központi elemei. Ezek a modellek arra képesek, hogy a bemenetként adott szöveg alapján értelmes
és összefüggő szöveget állítsanak elő. Az alábbiakban bemutatjuk a generatív nyelvi modellek
fejlődését, amely a GPT (Generative Pre-trained Transformer) családhoz vezetett.

1.) Hagyományos megközelítések (1950-2000-es évek)

Statikus modellek: A nyelv feldolgozásához egyszerű szabályalapú rendszereket (pl.
grammatikai szabályok) használtak.
Markov-láncok: Egy szó valószínűségét csak az előző szavak határozták meg, így a kontextus
figyelembevétele korlátozott volt.

Hiányosságok: A modellek nem tudták kezelni a hosszabb távú összefüggéseket. Az adatok
mennyisége és feldolgozási kapacitás limitált volt.

2.) Neurális hálózatok alkalamazása (2010 körül)

Word Embeddingek: Word2Vec (2013): Az egyes szavak vektortérbeli reprezentációját hozta létre,
amely tükrözi a szemantikai kapcsolataikat (king - man + woman ≈ queen).

Recurrent Neural Networks (RNNs) Az RNN-ek a szekvenciális adatok feldolgozására készültek.
Például egy szó vektora a korábbi szavak kontextusán alapult.

Hiányosságok: Lassúak és nehezen tanulhatók nagy mennyiségű adat esetén. Nem tudtak
hatékonyan kezelni nagyon hosszú szövegeket.

3.) Attention Mechanizmus és Transformer (2017)

Attention Mechanizmus: A figyelem-alapú modellek a bemenetek bizonyos részeire nagyobb súlyt
helyeztek, ezáltal hatékonyabbá tették az összefüggések felismerését.

Transformer Architektúra (2017): Az „Attention is All You Need” című cikkben a Google kutatói
bevezették a Transformer modellt. Kulcseleme az önfigyelem (self-attention), amely lehetővé tette,

2026/02/16 09:02 11/13 Neurális hálók

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

hogy a modell párhuzamosan dolgozza fel az adatokat, szemben az RNN-ek szekvenciális
feldolgozásával.

Előnyök: Jobb skálázódás nagyobb adathalmazokon. Hatékony hosszú szövegek feldolgozása.

4. Generatív Pre-Trained Modellek (GPT család)

GPT-1 (2018): Az első modell, amely a Transformer architektúrát alkalmazta nagyméretű nyelvi
korpuszokon.

GPT-2 (2019): Nagyobb és erősebb modell, amely képes volt teljes cikkeket generálni emberi
beavatkozás nélkül.

GPT-3 (2022): Egy óriási ugrás: 175 milliárd paraméter.

GPT-4 (2023): Még fejlettebb modell, több multimodális képességgel (pl. szöveg és kép
feldolgozása).

Számlafeldolgozó minta bemutatása.

Neurális hálózatok, felmerülő kérdések

Magyarázható-e a működése? (a súlyok alapján érthető-e a döntés?)1.
Van-e itt intelligencia egyáltalán?2.

Ellenőrző kérdések

Mi a neurális hálózatok alapvető építőeleme?

A) Node
B) Neuron
C) Hurok
D) Adatbázis

Megoldás: B

Milyen műveleteket végez egy neuron alapvetően?

A) Csak adatot tárol
B) Memóriát kezel
C) Súlyozott összegzést és aktivációt végez
D) Csak véletlenszerű értékeket generál

Megoldás: C

Last
update:
2025/03/13
22:56

muszaki_informatika:neuralis_halok_alapjai https://edu.iit.uni-miskolc.hu/muszaki_informatika:neuralis_halok_alapjai?rev=1741906602

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

Mi a tipikus célja a neurális hálózatok tanításának?

A) A bemenet másolása a kimenetre változtatás nélkül
B) Az adatokban található mintázatok megtanulása és általánosítása
C) Minél több neuron használata
D) A memóriahasználat csökkentése

Megoldás: B

Miért alkalmazunk aktivációs függvényeket a neurális hálózatokban?

A) Csak esztétikai okokból
B) Azért, hogy lineáris problémákat oldjunk meg
C) A hálózat nemlinearitásának biztosítására
D) A bemenet normalizálására

Megoldás: C

—- Mi az alábbiak közül egy közismert aktivációs függvény? A) XOR B) NAND C) Sigmoid D) AND
Megoldás: C —- Hogyan nevezzük azt a folyamatot, amikor a hibát visszafelé terjesztjük a hálózaton
a tanítás során? A) Feedforward B) Backpropagation C) Regularizáció D) Dropout Megoldás:
B —- Mi az “epoch” fogalma neurális háló tanítása során? A) Egyetlen neuron frissítése B) Egy
súlyfrissítés lépése C) A teljes tanító adathalmaz egyszeri áthaladása D) A tanítás
sebessége Megoldás: C —- Mi a célja a tanulási rátának (learning rate)? A) Meghatározza, hogy
a háló hány rétegből álljon B) Meghatározza, hogy mennyire gyorsan tanuljon a hálózat (a
súlyok frissítésének mértéke) C) Megadja, hány neuron legyen egy rétegben D)
Meghatározza a tanítás során használt neuronok számát Megoldás: B —- Mi a “túlillesztés”
(overfitting) jelensége neurális hálók esetén? A) A hálózat nem tanul eleget az adatokból B) A
hálózat túl általános megoldást ad C) A hálózat túl jól illeszkedik a tanuló adathalmazra,
de nem jól általánosít D) A hálózat nem tudja kezelni a bemeneteket Megoldás: C —- Mi
lehet egy jó módszer a túlillesztés csökkentésére? A) Több réteg hozzáadása B) Nagyobb
neuronok számának használata C) Dropout vagy regularizáció alkalmazása D) Tanítási
adatok csökkentése Megoldás: C —- Mi a felügyelt tanulás (supervised learning) jelentése? A) A
neurális háló saját maga fedezi fel a mintázatokat B) Az adatok mellé címkéket (helyes
válaszokat) is adunk a tanításhoz C) A hálózat nem kap visszajelzést a tanulás során D)
Véletlenszerű tanítási módszer használata Megoldás: B —- Mi igaz a „feedforward” folyamatra
egy neurális hálóban? A) A bemenetet visszafelé dolgozza fel B) A bemenetet a kimenet felé
haladva dolgozza fel a háló C) Csak hibaszámításra alkalmas D) A súlyok módosítására
használjuk Megoldás: B —- Mi történik egy neurális háló tanításakor, ha túl nagy a learning rate?**

A) A tanulás gyorsabb és stabilabb lesz
B) A hálózat túl lassan tanul
C) A tanítás instabillá válhat, és nem konvergál optimálisan
D) A neurális háló egyáltalán nem tanul

2026/02/16 09:02 13/13 Neurális hálók

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Megoldás: C

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/muszaki_informatika:neuralis_halok_alapjai?rev=1741906602

Last update: 2025/03/13 22:56

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/muszaki_informatika:neuralis_halok_alapjai?rev=1741906602

	[Neurális hálók]
	Neurális hálók
	Neuron modellezése
	Hálózati Modell
	Neurális háló, mint osztályozó - Generatív hálók
	Modell paramétereinek kiszámítása
	Mátrixok alkalmazása háló modellekben
	Példa konkrét számértékekkel (forward pass)
	A súlyok módosítása a hiba függvényében
	Loss Deriváltja a Kimeneti Réteg Súlyaira

	Generatív nyelvi modellek
	1.) Hagyományos megközelítések (1950-2000-es évek)
	2.) Neurális hálózatok alkalamazása (2010 körül)
	3.) Attention Mechanizmus és Transformer (2017)
	4. Generatív Pre-Trained Modellek (GPT család)
	Neurális hálózatok, felmerülő kérdések

	Ellenőrző kérdések

