
2026/02/16 11:13 1/5 A feladatok általános követelményei

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

A feladatok általános követelményei

Architektúra

A feladatok tipikusan olyan egyszerű alkalmazás integrációk, amelyek a JBoss vagy Wildfly alkalmazás
szerver, vagy docker segítségével megvalósíthatók.

Feladatok beadása

A feladatot a félév végén kell leadni, személyesen bemutatva. Lehet saját laptopon is vagy a labor
gépein. Csak email-ben elküldött megoldásokat nem fogadunk el.

Beadási határidő

Az utolsó tanítási héttel bezárólag minden gyakorlaton. Ezután pótlás is lehetséges.

Feladatok

1.

Készítsen egy alkalmazást, amely 2 kliensből áll. Az első kliens a '/queue/colorQueue' üzenetsorra
pont-pont csatlakozással véletlenszerűen RED, GREEN és BLUE paraméterrel ellátott üzeneteket küld
1 másodpercenként. Készítsen három MDB-t (üzenet vezérelt bean) amelyek filterrel a 'RED', 'GREEN'
és a 'BLUE' paraméterrel ellátott üzeneteket kapják kizárólag. Minden 10 megkapott üzenet után az
MDB-k a '/queue/colorStatistics' sorra küldenek egy üzenetet, ami azt jelzi, hogy 10 (adott színű)
üzenetet feldolgoztak. Készítsen egy második klienst, ami a '/queue/colorStatistics' sorrol olvassa a
statisztikát és a konzolba kiírja hogy pl. '10 'RED' messages has been processed'

2.

Készítsen egy alkalmazást, amely 3 kliensből áll. Az első kliens a '/queue/colorQueue' üzenetsorra
pont-pont csatlakozással véletlenszerűen RED, GREEN és BLUE paraméterrel ellátott üzeneteket küld
1 másodpercenként. Készítsen három MDB-t amelyek filterrel a 'RED', 'GREEN' és a 'BLUE'
paraméterrel ellátott üzeneteket kapják kizárólag. Az MDB-k véletlenszerűen átlagosan 10 ből 3 szor,



Last
update:
2025/03/10
11:32

tanszek:oktatas:informacios_rendszerek_integralasa:feladatok https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:feladatok?rev=1741606324

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 11:13

rollback-elik az üzenetet, ami így a halott levél csatornára kerül. Minden 10 sikeresen megkapott
(nem rollback-elt) üzenet után az MDB-k a '/queue/colorStatistics' sorra küldenek egy üzenetet, ami
azt jelzi, hogy 10 (adott színű) üzenetet feldolgoztak. Készítsen egy második klienst, ami a
'/queue/colorStatistics' sorrol olvassa a statisztikát és a konzolba kiírja hogy pl. '10 'RED' messages
has been processed'. A harmadik kliens a '/queue/DLQ' halott levél csatornáról a konzolon jelzi, ha
egy üzenetet nem dolgoztak fel.

3.

Készítsen alkalmazást, amely az 1. feladat alapján működik, annyi különbséggel, hogy a kliens egy
webszolgáltatás, amely SOAP-on keresztül küldi a véletlenszerű színeket a a Wildfly
webszolgáltatásnak, és a webszolgáltatás küldi tovább '/queue/colorQueue' üzenetsorra pont-pont
csatlakozással az üzeneteket. Az ez utáni teendők megegyeznek az 1.-es feladatban leírtakkal. A
lényeges különbség az, hogy a kliens nem kapcsolódik közvetlenül az üzenetsorra, hanem a Wildfly-
ban futó szolgáltatás küldi tovább az üzenetet a sorra.

4.

Készítsen alkalmazást, amely az 2. feladat alapján működik, annyi különbséggel, hogy a kliens egy
webszolgáltatás, amely SOAP-on keresztül küldi a véletlenszerű színeket a a Wildfly
webszolgáltatásnak, és a webszolgáltatás küldi tovább '/queue/colorQueue' üzenetsorra pont-pont
csatlakozással az üzeneteket. Az ez utáni teendők megegyeznek az 2.-es feladatban leírtakkal. A
lényeges különbség az, hogy a kliens nem kapcsolódik közvetlenül az üzenetsorra, hanem a Wildfly
ban futó szolgáltatás küldi tovább az üzenetet a sorra.

5.

Készítsen alkalmazást amelynek egyik kliense a '/queue/colorQueue' üzenetsorra véletlen szöveges
üzeneteket küld. ('RED', 'GREEN', 'BLUE') szöveggel 0.5 másodpercenként. Készítsen 3 további klienst
amelyek folyamatosan 'hallgatják' a '/queue/colorQueue' üzenetsort, ha valamelyik üzenetet olvas a
sorról, akkor véletlenszerűen (2000-9000) milliszekundum ideig várakozik, majd utána újra hallgatja
az üzenetsort. (A véletlenszerű feldolgozási idő miatt -e közben egy másik üzenetet a következő
kliens fogja feldolgozni). A 3 kliensnek ne legyen konzol outputja, azaz ne írjon ki semmit a konzolra.
Minden üzenet feldolgozása után a '/queue/processedColors' sorra küldjenek egy üzenetet, ami azt
jelzi, hogy feldolgozták a feladatot. Készítsen egy klienst, ami a '/queue/processedColors' sort olvassa
és a megjelenő üzeneteket kiírja az outputra. pl: 'Client 2, processed a 'BLUE' message'. Ennél a
feladatnál nem kell a Wildfly-ban komponenst létrehozni.



2026/02/16 11:13 3/5 A feladatok általános követelményei

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

6.

Készítsen egy képzeletbeli prepaid mobilfeltöltő alkalmazást amely egy tcp alapú socket szerver lesz
egy adott porton fogadja a kliensen kéréseit. A kliensek atm automaták, amelyek a következő
protokoll szerint működnek: 1.) a kliens egy tesztüzenetben elküldi a feltölteni kívánt telefonszámot,
2.) ha a szám feltölthető, akkor OK egyébként ERROR üzenettel megszakítja a tranzakciót. OK üzenet
esetén egy tranzakció azonosítót kapunk, amely a következő 3. lépésben azonosítja a folyamatot. 3.)
a kliens a tényleges feltöltést kezdeményezi a korábban kapott tranzakció azonosítóval, de újra el kell
küldeni a telefonszámot és a feltöltési összeget.

A lehetséges feltöltési összegek: 3000,5000,10000,15000 Készítsen egy lekérdező klienst, amely egy
adott telefonszámhoz tartozó korábbi tranzakciókat listázza. Használjon adatbázist a tranzakciók
tárolására a szerver alkalmazásban.

Indítson 3 klienst, amelyek egy előre adott telefonszám halmazt használnak és véletlenszerűen teszt
és feltöltés tranzakciókat indítanak.

7.

Készítsen egy kliens alkalmazást, ami http POST kérésekkel szöveges adatokat küld egy üzenetsor
vezérelt mintarendszerbe. Úgy tervezze meg az alaprendszert, hogy később nemcsak szöveges,
hanem más, pl. bináris állományokat is tudjon kezelni. A mintarendszer alapfeladata, hogy
megszámolja a szöveges állományokban a szavak számát és eredményként visszadja a kliensnek.
Készítsen egy futtató környezetet amiben több kliens párhuzamosan, véletlenszerű állományokkal
használja a szolgáltatást. Készítsen legalább 3 mintaszöveget a teszteléshez. Tételezzük fel, hogy a
működő rendszert ki kell egészíteni egy új funkcióval: mostmár bmp formátumú képeket is lehet
küldeni, amelyeknél a rendszer a kép méretét adja vissza ereményként. Készítse el úgy a rendszert,
hogy menet közben lehessen kicserélni a kliens és szerver komponenseket, azaz nem lehet leállítani a
rendszert. A megoldáshoz használja az itt bemutatott elveket:
http://ait2.iit.uni-miskolc.hu/oktatas/doku.php?id=tanszek:oktatas:informacios_rendszerek_integralasa
:oesszetett_pelda_1

8.

Adott egy A és egy B szerverkomponens. A B komponens hozzáfér egy SQL adatbázishoz, amiben 1
db tábla van, ami személyek adatait tartalmazza (név, szül idő, stb..). Az 'A' komponensnek nincs
hozzáférése az adatbázishoz. Az 'A' komponens rendelkezik viszont egy browser-ben megjelenő
felülettel, ahol személyek adatait lehet lekérdezni (összes személyt egyszerre) és új személyt lehet
felvenni. A 'B' komponens két funkciója: egy új személy felvétele és a személyek lekérdezése az
adatbázisból. Készítse el az A és B komponenseket és hozzon létre kapcsolatot közöttük SOAP
felhasználásával. Az A és B komponens tetszőleges technológia lehet.

http://ait2.iit.uni-miskolc.hu/oktatas/doku.php?id=tanszek:oktatas:informacios_rendszerek_integralasa:oesszetett_pelda_1
http://ait2.iit.uni-miskolc.hu/oktatas/doku.php?id=tanszek:oktatas:informacios_rendszerek_integralasa:oesszetett_pelda_1


Last
update:
2025/03/10
11:32

tanszek:oktatas:informacios_rendszerek_integralasa:feladatok https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:feladatok?rev=1741606324

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 11:13

9.

Adott egy A és egy B szerverkomponens. A B komponens hozzáfér egy NO-SQL adatbázishoz, amiben
1 db tábla van, ami könyvek adatait tartalmazza (cím, szerzők, kiadó, év, stb..). Az 'A' komponensnek
nincs hozzáférése az adatbázishoz. Az 'A' komponens rendelkezik viszont egy browser-ben megjelenő
felülettel, ahol könyvek adatait lehet lekérdezni (összes könyvet egyszerre) és új könyvet is fel lehet
venni. A 'B' komponens két funkciója: egy új könyv felvétele és a könyvek lekérdezése az
adatbázisból. Készítse el az A és B komponenseket és hozzon létre kapcsolatot közöttük JAX/RS
felhasználásával. Az A és B komponens tetszőleges technológia lehet.

10.

Készítsen olyan mintarendszert, ami képes működés közben updgradel-ni. Adott egy kliens
komponens (A), ami 2 másodpercenként üzenetet küld a tasks üzenetsornak. A kezdeti üzenetek
verziója V1.0. Készítsen egy consumer komponenst (B), ami feldolgozza az üzeneteket és a
finishedTasks üzenetsorra küldi a kész üzeneteket, az üzenetekhez hozzáfűzi az aktuális időt. A B
komponens fel legyen készítve arra az esetre, ha az üzenet verziószáma nem V1.0, ekkor az üzenetet
az invalidTasks üzenetsorra továbbítja. A (C) consumer komponens az invalidTasks üzenetsorról
leveszi az üzeneteket és 5 másodperc késleltéssel visszateszi a tasks üzenetsorra. Mutassuk be, ha a
(A) komponens módosításával v2.0 verziószámú üzeneteket küldünk és a (B) komponensben
feldogozzuk a V2.0 üzeneteket (azaz nem küldjük az invalidTasks sorra őket) akkor a rendszer kis
késleltetéssel, de leállítás nélkül tud üzemelni.

11. Fény intenzitás monitorozó rendszer

Készítsen egy alkalmazást, amely a beltéri fényszintet (lux) figyeli. A rendszer három külön kliensből
áll: egy adatgenerátorból, egy feldolgozóból és egy riasztás-kezelő kliensből.

Komponens 1: Light Intensity Generation Client

Csatlakozás: A kliens a lightIntensityQueue pontról-pontra típusú (point-to-point) üzenetsorhoz1.
csatlakozik.
Feladat: 3 másodpercenként véletlenszerű fényszint-adatokat (lux értékeket) küld, például 0 és2.
2000 lux között.

Példa: 300 lux, 1500 lux, stb.1.

Komponens 2: Light Intensity Processor

Üzenetfogadás: Egy processzor, amely kizárólag a lightIntensityQueue üzeneteit kapja meg1.
(fényszint mérési adatok).
Feldolgozás: Meghatározza, hogy a fényerő értéke túl alacsony-e. Például dönthetünk úgy, hogy2.
100 lux alatti érték esetén „sötét” állapotot észlelünk.
Riasztás küldése: Ha 3 egymást követő mérés alatt marad 100 luxon, a processzor egy3.



2026/02/16 11:13 5/5 A feladatok általános követelményei

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

riasztásüzenetet küld a lightAlertQueue üzenetsorba azzal a szöveggel, hogy pl. “Low light alert:
3 consecutive readings below 100 lux.”

Komponens 3: Alert Reporting Client

Fogyasztás: A kliens a lightAlertQueue üzenetsorból olvassa a riasztásokat.1.
Kimenet: A kapott értesítéseket kiírja a konzolra, pl. “Low light alert: 3 consecutive readings2.
below 100 lux.”

Működés tesztelése:

Üzenetküldés és -fogadás tesztelése: Ellenőrizd, hogy a fényszint-adatokat helyesen küldi és
fogadja a rendszer.
Alacsony fényszint felismerése: Teszteld, hogy 3 egymást követő <100 lux érték esetén a
riasztás helyesen továbbítódik.
Riasztási mechanizmus: Ellenőrizd, hogy a lightAlertQueue-ba kerül-e az üzenet, és a kliens
kiírja-e a figyelmeztetést a konzolra.

12. Hangerő figyelő rendszer (Sound Level Alert System)

Készítsen egy alkalmazást, amely zajszint (decibel) értékeket figyel egy adott környezetben. Három
kliensből áll: egy adatokat generáló kliensből, egy zajszint-feldolgozóból és egy riasztási kliensből.

Komponens 1: Sound Level Generation Client

Csatlakozás: A kliens a soundLevelQueue pontról-pontra típusú üzenetsorhoz csatlakozik.1.
Feladat: 2 másodpercenként küld véletlenszerű zajszint-adatokat decibelben, pl. 30 dB és 1202.
dB között.

Komponens 2: Sound Level Processor

Üzenetfogadás: Kizárólag a soundLevelQueue-ból olvas.1.
Feldolgozás: Meghatározza, hogy a zajszint magas-e. Például 80 dB felett „túl hangos” értéknek2.
tekintjük.
Riasztás: Ha egy időn belül 5 db “túl hangos” érték (80 dB felett) érkezik, küld egy üzenetet a3.
soundAlertQueue-ba: “High noise alert: 5 high decibel readings detected.”

Megjegyzés: Dönthetünk úgy, hogy egymást követő 5 mérés is elegendő, vagy a1.
feldolgozó számlálja, amíg össze nem gyűlik 5 hangos mérés, majd riaszt.

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:feladatok?rev=1741606324

Last update: 2025/03/10 11:32

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:feladatok?rev=1741606324

	A feladatok általános követelményei
	Architektúra
	Feladatok beadása
	Beadási határidő
	Feladatok
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11. Fény intenzitás monitorozó rendszer
	12. Hangerő figyelő rendszer (Sound Level Alert System)


