2026/02/16 09:01 1/7 Alapvet6 adattovabbitasi protokollok

Alapveto adattovabbitasi protokollok

TCP (Transmission Control Protocol)

* Megbizhatd: A TCP biztositja az adatok pontos, sorrendben torténd kézbesitését,
visszaigazolasok és Ujrakildések segitségével.

» Kapcsolatorientalt: A kommunikacié megkezdése el6tt kapcsolatot kell [étesiteni a két fél
kozott.

» Aramlasszabalyozas és zstfoltsagkezelés: Szabalyozza az adatétvitel sebességét a haldzat
és a végpontok aktualis allapota alapjan.

e Alkalmazasok: Webbongészés (HTTP/HTTPS), e-mail (SMTP, IMAP/POP3), fajlatvitel (FTP), és
mas, a megbizhat6 adatatvitelt igényld alkalmazasok.

UDP (User Datagram Protocol)

Nem megbizhatd: Nem garantalja az adatok sorrendjét vagy sikeres kézbesitését; nincs
Ujrakiildés vagy sorrend helyredllitas.

Kapcsolatmentes: Nem igényel el6zetes kapcsolatfelépitést az adatok kiildése elétt, lehetévé
téve a gyors adattovabbitast.

Konnyusulyu: Kevesebb fejlécinformaciot hasznal, ami kevesebb haldzati terhelést jelent.
Alkalmazasok: Streaming média (vided, audio), online jatékok, VolP (Voice over Internet
Protocol), és mas iddkritikus alkalmazasok, ahol a sebesség fontosabb, mint a megbizhatdsag.

QUIC (Quick UDP Internet Connections) (2021-es szabvany)

* Gyors kapcsolatfelépités: A QUIC csokkenti a kapcsolatfelépités idejét, mivel kevesebb
kézbesitési kdrre van szlikség a kapcsolat |étrehozdsahoz, ami gyorsabb weboldal-betdltést tesz
lehetdvé.

» Multiplexalt adatfolyam: Egyetlen QUIC-kapcsolat tobb adatfolyamot is képes kezelni, ezaltal
csokkentve az ugynevezett “fejlécblokkolast”, ami a TCP kapcsolatokban el6fordulhat.

e Parhuzamos adatatvitel: A QUIC lehetdvé teszi tobb adatfolyam egyidejli Iétrehozasat és
kezelését egyetlen kapcsolaton belll. Ez javitja az adatatvitel hatékonysagat, mivel az egyik
folyam atmeneti késése vagy blokkoldsa nem akaddalyozza a tobbi folyam adatatvitelét.

» Fejlécblokkolas elkeriilése: A TCP-nél tapasztalt fejlécblokkolds problémaja, amikor egy
adott adatfolyam késleltetése blokkolja a tobbi folyamat adatatvitelét, a QUIC multiplexalasaval
teljesen megszlinik. Ezzel gyorsabb és hatékonyabb webes éiményt nyujt a felhasznaldknak.

* Fuggetlen hiba- és aramlasszabalyozas: Minden QUIC-adatfolyam sajat hiba- és
aramlasszabalyozassal rendelkezik, ami azt jelenti, hogy egy folyam problémai nem
befolydsoljak a tobbi folyam teljesitményét.

e Dinamikus prioritasok: A QUIC lehetdvé teszi az adatfolyamok prioritdsanak dinamikus
madositasat, amely segit optimalizalni az eréforrasok felhasznalasat és javitja az alkalmazasok
valaszidejét.

« Titkositas: A QUIC alapértelmezés szerint biztositja az adatok végponttdl végpontig torténd

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last

;823}3:3/01 tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709327757

21:15

titkositasat, hasznalva a TLS (Transport Layer Security) legUjabb verzidit, ezaltal javitva az
adatbiztonsagot.

» Kapcsolat migracio: A QUIC képes fenntartani egy aktiv kapcsolatot még akkor is, ha a
felhaszndlé eszkoze halézatot valt (példaul Wi-Fi-rél mobil adatra), ami folyamatosabb éiményt
nyUjt a mobil felhasznaldk szamara.

o Aramldsszabalyozas és zsufoltsagkezelés: A QUIC sajat dramlasszabalyozast és
zsufoltsagkezelést implemental, amelyek optimalizaljak az adatatvitelt a valtozé haldzati
korilmények kozott.

e Alkalmazasok: A QUIC-t széles kérben haszndljak webbdngészéshez, vided streaminghez,
online jatékokhoz, IOT (Internet of Things) és mas, nagy sebességl és megbizhatésagot igényld
internetes alkalmazasokhoz.

tovabbi részletesebb informacid

Gyakorlé feladat

Készitsen egy egyszerUsitett FTP (file transport) klienst és szervert, amelynél a kliens elklldhet vagy
letdlthet széveges file-okat a szerverrél. Altaldnos funkcié leiras:

1.) Kliens becsatlakozik a szerverhez és kiild egy listazas lizenetet

2.) Szerver visszakuldi a tarolt file-ok listajat (vagy el6z6leg feltoltott file-ok listajat)

3.) Kliens kilistdzza a fileokat, és bekéri a felhasznal6tél, hogy milyen miveletet szeretne
végezni? Feltdltés vagy letoltés? (‘'u' vagy 'd')

4.) Mindkét esetben be kell irni a file nevét kiterjesztéssel egyltt

5.) A kliens elkildi a szerverre a kivalasztott file-t, vagy letdlti a kivalasztott file-t egy adott
konyvtarba.

Szerver nézopont:

1.) Becsatlakozas utan felolvassa a file-okat a /store alkdnyvtarbdl és a listazas lGzenet
megérkezése utan a fajlneveket elkiildi a kliensnek.

2.) Varakozunk a kliens 'u' vagy 'd' miveletére

3.) Klienstdl kapunk egy filenevet és ha 'd' (download) a muivelet, akkor felolvassuk a file-t és
visszakuldjik a tartalmat

4.) Ha a mUvelet 'u' (feltoltés), akkor nyitunk egy Uj file-t a megadott néven és varjuk az adatokat,
amiket kiirunk a file-ba.

Kliens nézépont

1.) A kliens becsatlakozik és varja a visszajové fajlok listajat, majd ha megjon akkor kiirjuk a
konzolra

) Bekérjik a “u” vagy “d” billenty(t

) Majd kérjik a file-nevet is.

) a kliens a /files kdnvytarabdl olvassa a file-okat, vagy a letoltott file-t is ide hozza létre

) “d” billenty(i esetén létrehozza a /files/<filename> allomanyt és a szerverrdl jov6 adatokat
beleirja

6.) “u” billenty(esetén a /files/<filename> allomanyt elkiildi a szervernek

vk whN

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

https://www.debugbear.com/blog/http3-quic-protocol-guide

2026/02/16 09:01 3/7 Alapvet6 adattovabbitasi protokollok

Kiinduld mintak

1.) Hagyomanyos blokkolt TCP alapu socket szerver

Socket szerver kod

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.ServerSocket;
import java.net.Socket;
public class Server {
ServerSocket providerSocket;
Socket connection = null;
ObjectOutputStream out;
ObjectInputStream in;
String message;
Server() {
}
void run() {
try {
// 1. szerver socket 1étrehozasa
providerSocket = new ServerSocket(8080);
// 2. kapcsoldédasra varakozas
connection = providerSocket.accept();
// 3. Input és Output streamek megadasa
out = new ObjectOutputStream(connection.getOutputStream());
in = new ObjectInputStream(connection.getInputStream());
// 4. socket kommunikdcié
do {
try {
message = (String) in.readObject();
System.out.println("client>" + message);
if (message.equals("bye")) {
sendMessage("bye");
}
} catch (ClassNotFoundException classnot) {
System.err.println("Data received in unknown
format");
}
} while (!message.equals("bye"));
} catch (IOException ioException) {
ioException.printStackTrace();
} finally {
// 4: kapcsolat lezarasa
try {
in.close();

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/01
21:15

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709327757

out.close();
providerSocket.close();

} catch (IOException ioException) {
ioException.printStackTrace();

}
}
}
void sendMessage(String msg) {
try {
out.writeObject(msg);
out.flush();
System.out.println("server>" + msqg);
} catch (IOException ioException) {
ioException.printStackTrace();
}
}

public static void main(String args[]) {
Server server = new Server();
while (true) {
server.run();

}

Socket kliens kod

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.Socket;
import java.net.UnknownHostException;
public class Client {
Socket requestSocket;
ObjectOutputStream out;
ObjectInputStream in;
String message;
Client() {
}
void run() {
try {
// 1. socket kapcsolat létrehozasa
requestSocket = new Socket("localhost", 8080);
// 2. Input and OQutput streamek
out = new
ObjectOutputStream(requestSocket.getOQutputStream());
in = new ObjectInputStream(requestSocket.getInputStream());
// 3: Kommunikacid

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

2026/02/16 09:01 5/7 Alapvet6 adattovabbitasi protokollok

do {
try {
sendMessage("Hello szerver");
sendMessage("bye");
message = (String) in.readObject();
} catch (Exception e) {
System.err.println("data received in unknown

format");
}
} while (!message.equals("bye"));
} catch (UnknownHostException unknownHost) {
System.err.println("You are trying to connect to an unknown
host!");
} catch (IOException ioException) {
ioException.printStackTrace();
} finally {
// 4: Kapcsolat zdarasa
try {
in.close();
out.close();
requestSocket.close();
} catch (IOException ioException) {
ioException.printStackTrace();
}
}
}
void sendMessage(String msg) {
try {
out.writeObject(msg);
out.flush();
System.out.println("client>" + msqg);
} catch (IOException ioException) {
ioException.printStackTrace();
}
}
public static void main(String args[]) {
Client client = new Client();
client.run();

2.) Hagyomanyos UDP alapu kommunikacio
2.a) Az alabbi Agens kiild egy lizenetet és a 8080-as porton varja a valaszt ra, ugyancsak UDP-vel. Az
eclipse fejlesztékornyezetben a consolon beirt széveget ctrl+z lelitésével lehet elkiildeni.

Feladat: mddositsuk a kddot, hogy at tudjon kildeni egy beégetett nevd, és létez0, 2 kbyte-nal
nagyobb szdveges vagy kép allomanyt és ellendrizzlk a sikeres kiildést.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last

;823}8:3/01 tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709327757

21:15

package org.ait;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
public class UDPClient {
public static void main(String args[]) throws Exception {
BufferedReader inFromUser = new BufferedReader (new
InputStreamReader(System.in));
DatagramSocket clientSocket = new DatagramSocket();
InetAddress IPAddress = InetAddress.getByName("localhost");
byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];
String sentence = inFromUser.readlLine();
sendData = sentence.getBytes();
DatagramPacket sendPacket = new DatagramPacket(sendData,
sendData.length, IPAddress, 8080);
clientSocket.send(sendPacket) ;
DatagramPacket receivePacket = new DatagramPacket(receiveData,
receiveData.length);
clientSocket.receive(receivePacket);
String modifiedSentence = new String(receivePacket.getData());
System.out.println("atalakitva:" + modifiedSentence);
clientSocket.close();

2.b) Az UDP szerver a 8080-as porton varja az agensek (izeneteit és nagybetlre konvertalva
visszakuldi a kliens UDP socketre.

package org.ait;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class UDPServer {

public static void main(String args[]) throws Exception {
DatagramSocket serverSocket = new DatagramSocket (8080);
byte[] bytesReceived = new byte[1024];
byte[] bytesSent = new byte[1024];
DatagramPacket receivePacket = new DatagramPacket (bytesReceived,
bytesReceived. length);

// itt varakozik ameddig adat jon a 8080-as porton
serverSocket.receive(receivePacket);
String szoveg = new String(receivePacket.getData());
System.out.println("kaptam: " + szoveq);
InetAddress IPAddress = receivePacket.getAddress();

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

2026/02/16 09:01 777 Alapvet6 adattovabbitasi protokollok

int port = receivePacket.getPort();

String nagybet(isSzoveg = szoveg.toUpperCase();

bytesSent = nagybet(isSzoveg.getBytes();

// visszakildi

DatagramPacket sendPacket = new DatagramPacket (bytesSent,
bytesSent.length, IPAddress, port);

serverSocket.send(sendPacket) ;

serverSocket.close();

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709327757 *

Last update: 2024/03/01 21:15

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709327757

	Alapvető adattovábbítási protokollok
	TCP (Transmission Control Protocol)
	UDP (User Datagram Protocol)
	QUIC (Quick UDP Internet Connections) (2021-es szabvány)
	Gyakorló feladat
	Kiinduló minták
	1.) Hagyományos blokkolt TCP alapú socket szerver
	Socket szerver kód
	Socket kliens kód

	2.) Hagyományos UDP alapú kommunikáció

