
2026/02/16 09:01 1/7 Alapvető adattovábbítási protokollok

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Alapvető adattovábbítási protokollok

TCP (Transmission Control Protocol)

Megbízható: A TCP biztosítja az adatok pontos, sorrendben történő kézbesítését,
visszaigazolások és újraküldések segítségével.
Kapcsolatorientált: A kommunikáció megkezdése előtt kapcsolatot kell létesíteni a két fél
között.
Áramlásszabályozás és zsúfoltságkezelés: Szabályozza az adatátvitel sebességét a hálózat
és a végpontok aktuális állapota alapján.
Alkalmazások: Webböngészés (HTTP/HTTPS), e-mail (SMTP, IMAP/POP3), fájlátvitel (FTP), és
más, a megbízható adatátvitelt igénylő alkalmazások.

UDP (User Datagram Protocol)

Nem megbízható: Nem garantálja az adatok sorrendjét vagy sikeres kézbesítését; nincs
csomag újraküldés vagy csomagsorrend helyreállítás.
Kapcsolatmentes: Nem igényel előzetes kapcsolatfelépítést az adatok küldése előtt, lehetővé
téve a gyors adattovábbítást.
Könnyűsúlyú: Kevesebb fejlécinformációt használ, ami kevesebb hálózati terhelést jelent.
Alkalmazások: Streaming média (videó, audio), online játékok, VoIP (Voice over Internet
Protocol), és más időkritikus alkalmazások, ahol a sebesség fontosabb, mint a megbízhatóság.

QUIC (Quick UDP Internet Connections) (2021-es szabvány)

Gyors kapcsolatfelépítés: A QUIC csökkenti a kapcsolatfelépítés idejét, mivel kevesebb
kézbesítési körre van szükség a kapcsolat létrehozásához, ami gyorsabb weboldal-betöltést tesz
lehetővé.

Multiplexált adatfolyam: Egyetlen QUIC-kapcsolat több adatfolyamot is képes kezelni, ezáltal
csökkentve az úgynevezett “fejlécblokkolást”, ami a TCP kapcsolatokban előfordulhat.

Párhuzamos adatátvitel: A QUIC lehetővé teszi több adatfolyam egyidejű létrehozását és
kezelését egyetlen kapcsolaton belül. Ez javítja az adatátvitel hatékonyságát, mivel az egyik
folyam átmeneti késése vagy blokkolása nem akadályozza a többi folyam adatátvitelét.

Fejlécblokkolás elkerülése: A TCP-nél tapasztalt fejlécblokkolás problémája, amikor egy
adott adatfolyam késleltetése blokkolja a többi folyamat adatátvitelét, a QUIC multiplexálásával
teljesen megszűnik. Ezzel gyorsabb és hatékonyabb webes élményt nyújt a felhasználóknak.

Független hiba- és áramlásszabályozás: Minden QUIC-adatfolyam saját hiba- és
áramlásszabályozással rendelkezik, ami azt jelenti, hogy egy folyam problémái nem
befolyásolják a többi folyam teljesítményét.

Dinamikus prioritások: A QUIC lehetővé teszi az adatfolyamok prioritásának dinamikus
módosítását, amely segít optimalizálni az erőforrások felhasználását és javítja az alkalmazások
válaszidejét.

Titkosítás: A QUIC alapértelmezés szerint biztosítja az adatok végponttól végpontig történő

Last
update:
2024/03/01
21:16

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709327799

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

titkosítását, használva a TLS (Transport Layer Security) legújabb verzióit, ezáltal javítva az
adatbiztonságot.

Kapcsolat migráció: A QUIC képes fenntartani egy aktív kapcsolatot még akkor is, ha a
felhasználó eszköze hálózatot vált (például Wi-Fi-ről mobil adatra), ami folyamatosabb élményt
nyújt a mobil felhasználók számára.

Áramlásszabályozás és zsúfoltságkezelés: A QUIC saját áramlásszabályozást és
zsúfoltságkezelést implementál, amelyek optimalizálják az adatátvitelt a változó hálózati
körülmények között.

Alkalmazások: A QUIC-t széles körben használják webböngészéshez, videó streaminghez,
online játékokhoz, IOT (Internet of Things) és más, nagy sebességű és megbízhatóságot igénylő
internetes alkalmazásokhoz.

további részletesebb információ

Gyakorló feladat

Készítsen egy egyszerűsített FTP (file transport) klienst és szervert, amelynél a kliens elküldhet vagy
letölthet szöveges file-okat a szerverről. Általános funkció leírás:

) Kliens becsatlakozik a szerverhez és küld egy listázás üzenetet1.
) Szerver visszaküldi a tárolt file-ok listáját (vagy előzőleg feltöltött file-ok listáját)2.
) Kliens kilistázza a fileokat, és bekéri a felhasználótól, hogy milyen műveletet szeretne3.
végezni? Feltöltés vagy letöltés? ('u' vagy 'd')
) Mindkét esetben be kell írni a file nevét kiterjesztéssel együtt4.
) A kliens elküldi a szerverre a kiválasztott file-t, vagy letölti a kiválasztott file-t egy adott5.
könyvtárba.

Szerver nézőpont:

) Becsatlakozás után felolvassa a file-okat a /store alkönyvtárból és a listázás üzenet1.
megérkezése után a fájlneveket elküldi a kliensnek.
) Várakozunk a kliens 'u' vagy 'd' műveletére2.
) Klienstől kapunk egy filenevet és ha 'd' (download) a művelet, akkor felolvassuk a file-t és3.
visszaküldjük a tartalmát
) Ha a művelet 'u' (feltöltés), akkor nyitunk egy új file-t a megadott néven és várjuk az adatokat,4.
amiket kiírunk a file-ba.

Kliens nézőpont

) A kliens becsatlakozik és várja a visszajövő fájlok listáját, majd ha megjön akkor kiírjuk a1.
konzolra
) Bekérjük a “u” vagy “d” billentyűt2.
) Majd kérjük a file-nevet is.3.
) a kliens a /files könvytárából olvassa a file-okat, vagy a letöltött file-t is ide hozza létre4.
) “d” billentyű esetén létrehozza a /files/<filename> állományt és a szerverről jövő adatokat5.
beleírja
) “u” billentyű esetén a /files/<filename> állományt elküldi a szervernek6.

https://www.debugbear.com/blog/http3-quic-protocol-guide

2026/02/16 09:01 3/7 Alapvető adattovábbítási protokollok

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Kiinduló minták

1.) Hagyományos blokkolt TCP alapú socket szerver

Socket szerver kód

 import java.io.IOException;
 import java.io.ObjectInputStream;
 import java.io.ObjectOutputStream;
 import java.net.ServerSocket;
 import java.net.Socket;
 public class Server {
 ServerSocket providerSocket;
 Socket connection = null;
 ObjectOutputStream out;
 ObjectInputStream in;
 String message;
 Server() {
 }
 void run() {
 try {
 // 1. szerver socket létrehozása
 providerSocket = new ServerSocket(8080);
 // 2. kapcsolódásra várakozás
 connection = providerSocket.accept();
 // 3. Input és Output streamek megadása
 out = new ObjectOutputStream(connection.getOutputStream());
 in = new ObjectInputStream(connection.getInputStream());
 // 4. socket kommunikáció
 do {
 try {
 message = (String) in.readObject();
 System.out.println("client>" + message);
 if (message.equals("bye")) {
 sendMessage("bye");
 }
 } catch (ClassNotFoundException classnot) {
 System.err.println("Data received in unknown
format");
 }
 } while (!message.equals("bye"));
 } catch (IOException ioException) {
 ioException.printStackTrace();
 } finally {
 // 4: kapcsolat lezárása
 try {
 in.close();

Last
update:
2024/03/01
21:16

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709327799

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

 out.close();
 providerSocket.close();
 } catch (IOException ioException) {
 ioException.printStackTrace();
 }
 }
 }
 void sendMessage(String msg) {
 try {
 out.writeObject(msg);
 out.flush();
 System.out.println("server>" + msg);
 } catch (IOException ioException) {
 ioException.printStackTrace();
 }
 }
 public static void main(String args[]) {
 Server server = new Server();
 while (true) {
 server.run();
 }
 }
 }

Socket kliens kód

 import java.io.IOException;
 import java.io.ObjectInputStream;
 import java.io.ObjectOutputStream;
 import java.net.Socket;
 import java.net.UnknownHostException;
 public class Client {
 Socket requestSocket;
 ObjectOutputStream out;
 ObjectInputStream in;
 String message;
 Client() {
 }
 void run() {
 try {
 // 1. socket kapcsolat létrehozása
 requestSocket = new Socket("localhost", 8080);
 // 2. Input and Output streamek
 out = new
ObjectOutputStream(requestSocket.getOutputStream());
 in = new ObjectInputStream(requestSocket.getInputStream());
 // 3: Kommunikáció

2026/02/16 09:01 5/7 Alapvető adattovábbítási protokollok

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 do {
 try {
 sendMessage("Hello szerver");
 sendMessage("bye");
 message = (String) in.readObject();
 } catch (Exception e) {
 System.err.println("data received in unknown
format");
 }
 } while (!message.equals("bye"));
 } catch (UnknownHostException unknownHost) {
 System.err.println("You are trying to connect to an unknown
host!");
 } catch (IOException ioException) {
 ioException.printStackTrace();
 } finally {
 // 4: Kapcsolat zárása
 try {
 in.close();
 out.close();
 requestSocket.close();
 } catch (IOException ioException) {
 ioException.printStackTrace();
 }
 }
 }
 void sendMessage(String msg) {
 try {
 out.writeObject(msg);
 out.flush();
 System.out.println("client>" + msg);
 } catch (IOException ioException) {
 ioException.printStackTrace();
 }
 }
 public static void main(String args[]) {
 Client client = new Client();
 client.run();
 }
 }

2.) Hagyományos UDP alapú kommunikáció

2.a) Az alábbi Ágens küld egy üzenetet és a 8080-as porton várja a választ rá, ugyancsak UDP-vel. Az
eclipse fejlesztőkörnyezetben a consolon beírt szöveget ctrl+z leütésével lehet elküldeni.

Feladat: módosítsuk a kódot, hogy át tudjon küldeni egy beégetett nevű, és létező, 2 kbyte-nál
nagyobb szöveges vagy kép állományt és ellenőrizzük a sikeres küldést.

Last
update:
2024/03/01
21:16

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709327799

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

 package org.ait;
 import java.io.BufferedReader;
 import java.io.InputStreamReader;
 import java.net.DatagramPacket;
 import java.net.DatagramSocket;
 import java.net.InetAddress;
 public class UDPClient {
 public static void main(String args[]) throws Exception {
 BufferedReader inFromUser = new BufferedReader(new
InputStreamReader(System.in));
 DatagramSocket clientSocket = new DatagramSocket();
 InetAddress IPAddress = InetAddress.getByName("localhost");
 byte[] sendData = new byte[1024];
 byte[] receiveData = new byte[1024];
 String sentence = inFromUser.readLine();
 sendData = sentence.getBytes();
 DatagramPacket sendPacket = new DatagramPacket(sendData,
sendData.length, IPAddress, 8080);
 clientSocket.send(sendPacket);
 DatagramPacket receivePacket = new DatagramPacket(receiveData,
receiveData.length);
 clientSocket.receive(receivePacket);
 String modifiedSentence = new String(receivePacket.getData());
 System.out.println("átalakítva:" + modifiedSentence);
 clientSocket.close();
 }
 }

2.b) Az UDP szerver a 8080-as porton várja az ágensek üzeneteit és nagybetűre konvertálva
visszaküldi a kliens UDP socketre.

 package org.ait;
 import java.net.DatagramPacket;
 import java.net.DatagramSocket;
 import java.net.InetAddress;
 public class UDPServer {
 public static void main(String args[]) throws Exception {
 DatagramSocket serverSocket = new DatagramSocket(8080);
 byte[] bytesReceived = new byte[1024];
 byte[] bytesSent = new byte[1024];
 DatagramPacket receivePacket = new DatagramPacket(bytesReceived,
bytesReceived.length);
 // itt várakozik ameddig adat jön a 8080-as porton
 serverSocket.receive(receivePacket);
 String szoveg = new String(receivePacket.getData());
 System.out.println("kaptam: " + szoveg);
 InetAddress IPAddress = receivePacket.getAddress();

2026/02/16 09:01 7/7 Alapvető adattovábbítási protokollok

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 int port = receivePacket.getPort();
 String nagybetűsSzöveg = szoveg.toUpperCase();
 bytesSent = nagybetűsSzöveg.getBytes();
 // visszaküldi
 DatagramPacket sendPacket = new DatagramPacket(bytesSent,
bytesSent.length, IPAddress, port);
 serverSocket.send(sendPacket);
 serverSocket.close();
 }
 }

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709327799

Last update: 2024/03/01 21:16

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709327799

	Alapvető adattovábbítási protokollok
	TCP (Transmission Control Protocol)
	UDP (User Datagram Protocol)
	QUIC (Quick UDP Internet Connections) (2021-es szabvány)
	Gyakorló feladat
	Kiinduló minták
	1.) Hagyományos blokkolt TCP alapú socket szerver
	Socket szerver kód
	Socket kliens kód

	2.) Hagyományos UDP alapú kommunikáció

