2026/02/16 09:01 1/7 Alapvet6 adattovabbitasi protokollok

Alapveto adattovabbitasi protokollok

TCP (Transmission Control Protocol)

* Megbizhatd: A TCP biztositja az adatok pontos, sorrendben torténd kézbesitését,
visszaigazolasok és Ujrakildések segitségével.

» Kapcsolatorientalt: A kommunikacié megkezdése el6tt kapcsolatot kell [étesiteni a két fél
kozott.

» Aramlasszabalyozas és zstfoltsagkezelés: Szabalyozza az adatétvitel sebességét a haldzat
és a végpontok aktualis allapota alapjan.

e Alkalmazasok: Webbongészés (HTTP/HTTPS), e-mail (SMTP, IMAP/POP3), fajlatvitel (FTP), és
mas, a megbizhat6 adatatvitelt igényld alkalmazasok.

UDP (User Datagram Protocol)

Nem megbizhatd: Nem garantalja az adatok sorrendjét vagy sikeres kézbesitését; nincs
csomag Ujrakildés vagy csomagsorrend helyreallitas.

Kapcsolatmentes: Nem igényel el6zetes kapcsolatfelépitést az adatok kiildése elétt, lehetévé
téve a gyors adattovabbitast. E miatt valds idejl adattovabbitast biztosit.

Konnyusulyu: Kevesebb fejlécinformaciot hasznal, ami kevesebb haldzati terhelést jelent. 8
byte a fejléc mindossze.

Alkalmazasok: Streaming média (vided, audio), online jatékok, VolP (Voice over Internet
Protocol), IOT (Internet of Things) és mas id6kritikus alkalmazasok, ahol a sebesség fontosabb,
mint a megbizhatdésag.

QUIC (Quick UDP Internet Connections) (2021-es szabvany)

e Multiplexalt adatfolyam: Egyetlen QUIC-kapcsolat tobb adatfolyamot is képes kezelni, ezaltal
csokkentve az ugynevezett “fejlécblokkolast”, ami a TCP kapcsolatokban el6fordulhat.

e Parhuzamos adatatvitel: A QUIC lehet6vé teszi tobb adatfolyam egyidejli 1étrehozasat és
kezelését egyetlen kapcsolaton bellll. Ez javitja az adatatvitel hatékonysagat, mivel az egyik
folyam atmeneti késése vagy blokkolasa nem akadalyozza a tobbi folyam adatatvitelét.

 Fiiggetlen hiba- és aramlasszabadlyozas: Minden QUIC-adatfolyam sajat hiba- és
aramlasszabalyozassal rendelkezik, ami azt jelenti, hogy egy folyam problémai nem
befolyasoljak a tobbi adatfolyam teljesitményét.

e Dinamikus prioritasok: A QUIC lehet6vé teszi az adatfolyamok prioritasanak dinamikus
maddositasat, amely segit optimalizalni az eréforrasok felhasznalasat és javitja az alkalmazasok
valaszidejét.

« Titkositds: A QUIC alapértelmezés szerint biztositja az adatok végponttdl végpontig torténd
titkositasat, haszndlva a TLS (Transport Layer Security) legUjabb verzidit, ezaltal javitva az
adatbiztonsagot.

» Kapcsolat migracio: A QUIC képes fenntartani egy aktiv kapcsolatot még akkor is, ha a
felhasznald eszkdze haldzatot valt (példaul Wi-Fi-rél mobil adatra), ami folyamatosabb éiményt
nyujt a mobil felhasznaldk szamara.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/02
10:12

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374355

e Alkalmazasok: A QUIC-t széles kérben hasznaljak webbdngészéshez, vide6 streaminghez,
online jatékokhoz, 10T (Internet of Things) és mas, nagy sebességl és megbizhatdsagot igényld
internetes alkalmazasokhoz.

tovabbi részletesebb informacid

Gyakorlé feladat

Készitsen egy egyszer(sitett FTP (file transport) klienst és szervert, amelynél a kliens elkildhet vagy
letdlthet széveges file-okat a szerverrél. Altaldnos funkcid leiras:

1.) Kliens becsatlakozik a szerverhez és kiild egy listdzas lizenetet

2.) Szerver visszakldi a tarolt file-ok listajat (vagy elézéleg feltoltott file-ok listajat)

3.) Kliens kilistazza a fileokat, és bekéri a felhasznalétdl, hogy milyen miveletet szeretne
végezni? Feltdltés vagy letdltés? (‘u' vagy 'd')

4.) Mindkét esetben be kell irni a file nevét kiterjesztéssel egytt

5.) Akliens elklldi a szerverre a kivalasztott file-t, vagy letdlti a kivalasztott file-t egy adott
konyvtarba.

Szerver nézépont:

1.) Becsatlakozas utan felolvassa a file-okat a /store alkdnyvtarbdl és a listazas lizenet
megérkezése utan a fajlneveket elkildi a kliensnek.

2.) Varakozunk a kliens 'u' vagy 'd' miveletére

3.) Klienstdl kapunk egy filenevet és ha 'd' (download) a mivelet, akkor felolvassuk a file-t és
visszakuldjlk a tartalmat

4.) Ha a mUvelet 'u' (feltoltés), akkor nyitunk egy Uj file-t a megadott néven és varjuk az adatokat,
amiket kiirunk a file-ba.

Kliens nézépont

1.) A kliens becsatlakozik és varja a visszajovo fajlok listajat, majd ha megjon akkor kiirjuk a
konzolra

) Bekérjik a “u” vagy “d” billenty(it

) Majd kérjik a file-nevet is.

) a kliens a /files kdnvytarabdl olvassa a file-okat, vagy a letoltott file-t is ide hozza létre

) “d” billenty(esetén létrehozza a /files/<filename> allomanyt és a szerverrdl jovd adatokat
beleirja

6.) “u” billentyl esetén a /files/<filename> allomanyt elkiildi a szervernek

A

Kiindulo mintak

1.) Hagyomanyos blokkolt TCP alapu socket szerver

Socket szerver kod

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

https://www.debugbear.com/blog/http3-quic-protocol-guide

2026/02/16 09:01

3/7 Alapvet6 adattovabbitasi protokollok

import
import
import
import
import
public

}

java.
java.
java.
java.
java.

io.IO0Exception;
io.0ObjectInputStream;
i0.0bjectOutputStream;
net.ServerSocket;
net.Socket;

class Server {
ServerSocket providerSocket;
Socket connection = null;
ObjectOutputStream out;
ObjectInputStream in;

String message;

Server() {

void run() {
try {

format");

}

// 1. szerver socket 1étrehozasa
providerSocket = new ServerSocket(8080);
// 2. kapcsoldédasra varakozas
connection = providerSocket.accept();
// 3. Input és Output streamek megadasa
out = new ObjectOutputStream(connection.getOutputStream());
in = new ObjectInputStream(connection.getInputStream());
// 4. socket kommunikacid
do {
try {
message = (String) in.readObject();
System.out.println("client>" + message);
if (message.equals("bye")) {
sendMessage("bye");
}
} catch (ClassNotFoundException classnot) {
System.err.println("Data received in unknown

}

} while (!message.equals("bye"));

} catch (IOException ioException) {

ioException.printStackTrace();

} finally {

}

// 4: kapcsolat lezarasa

try {
in.close();
out.close();
providerSocket.close();

} catch (IOException ioException) {
ioException.printStackTrace();

}

void sendMessage(String msg) {
try {

out.writeObject(msg);

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/02
10:12

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374355

out.flush();
System.out.println("server>" + msgqg);
} catch (IOException ioException) {
ioException.printStackTrace();
}
}

public static void main(String args[]) {
Server server = new Server();
while (true) {
server.run();

}

Socket kliens kod

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.Socket;
import java.net.UnknownHostException;
public class Client {
Socket requestSocket;
ObjectOutputStream out;
ObjectInputStream in;
String message;
Client() {
}
void run() {
try {
// 1. socket kapcsolat létrehozasa
requestSocket = new Socket("localhost", 8080);
// 2. Input and Output streamek
out = new
ObjectOutputStream(requestSocket.getOutputStream());
in = new ObjectInputStream(requestSocket.getInputStream());
// 3: Kommunikdcié
do {
try {
sendMessage("Hello szerver");
sendMessage("bye");
message = (String) in.readObject();
} catch (Exception e) {
System.err.println("data received in unknown
format");

}

} while (!message.equals("bye"));

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

2026/02/16 09:01 5/7 Alapvet6 adattovabbitasi protokollok

} catch (UnknownHostException unknownHost) {
System.err.println("You are trying to connect to an unknown

host!");
} catch (IOException ioException) {
ioException.printStackTrace();
} finally {
// 4: Kapcsolat zdardasa
try {
in.close();
out.close();
requestSocket.close();
} catch (IOException ioException) {
ioException.printStackTrace();
}
}
}
void sendMessage(String msg) {
try {
out.writeObject(msg);
out.flush();
System.out.println("client>" + msgqg);
} catch (IOException ioException) {
ioException.printStackTrace();
}
}
public static void main(String args[]) {
Client client = new Client();
client.run();
}
}

2.) Hagyomanyos UDP alapu kommunikacio

2.a) Az alébbi Agens kiild egy lizenetet és a 8080-as porton varja a valaszt ra, ugyancsak UDP-vel. Az
eclipse fejlesztékornyezetben a consolon beirt széveget ctrl+z lelitésével lehet elkiildeni.

Feladat: mddositsuk a kédot, hogy at tudjon killdeni egy beégetett nev, és létez6, 2 kbyte-ndl
nagyobb szdveges vagy kép allomanyt és ellendrizzlk a sikeres kiildést.

package org.ait;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
public class UDPClient {
public static void main(String args[]) throws Exception {
BufferedReader inFromUser = new BufferedReader(new

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:

2024/03/02 tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374355

10:12

InputStreamReader(System.in));
DatagramSocket clientSocket = new DatagramSocket();
InetAddress IPAddress = InetAddress.getByName("localhost");
byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];
String sentence = inFromUser.readlLine();
sendData = sentence.getBytes();
DatagramPacket sendPacket = new DatagramPacket(sendData,
sendData. length, IPAddress, 8080);
clientSocket.send(sendPacket);
DatagramPacket receivePacket = new DatagramPacket(receiveData,
receiveData.length);
clientSocket.receive(receivePacket);
String modifiedSentence = new String(receivePacket.getData());
System.out.println("dtalakitva:" + modifiedSentence);
clientSocket.close();

2.b) Az UDP szerver a 8080-as porton varja az dgensek lizeneteit és nagybetlre konvertalva
visszakuldi a kliens UDP socketre.

package org.ait;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class UDPServer {

public static void main(String args[]) throws Exception {

DatagramSocket serverSocket = new DatagramSocket(8080);
byte[] bytesReceived = new byte[1024];
byte[] bytesSent = new byte[1024];

DatagramPacket receivePacket = new DatagramPacket(bytesReceived,

bytesReceived. length);
// itt varakozik ameddig adat jon a 8080-as porton
serverSocket.receive(receivePacket);
String szoveg = new String(receivePacket.getData());
System.out.println("kaptam: " + szoveg);
InetAddress IPAddress = receivePacket.getAddress();
int port = receivePacket.getPort();
String nagybet(isSzoveg = szoveg.toUpperCase();
bytesSent = nagybet(isSzoveg.getBytes();
// visszakildi
DatagramPacket sendPacket = new DatagramPacket(bytesSent,
bytesSent.length, IPAddress, port);
serverSocket.send(sendPacket);
serverSocket.close();

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

2026/02/16 09:01 777 Alapvet6 adattovabbitasi protokollok

}

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:

Last update: 2024/03/02 10:12

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374355

	Alapvető adattovábbítási protokollok
	TCP (Transmission Control Protocol)
	UDP (User Datagram Protocol)
	QUIC (Quick UDP Internet Connections) (2021-es szabvány)
	Gyakorló feladat
	Kiinduló minták
	1.) Hagyományos blokkolt TCP alapú socket szerver
	Socket szerver kód
	Socket kliens kód

	2.) Hagyományos UDP alapú kommunikáció

