2026/02/16 09:01 1/7 Alapvet6 adattovabbitasi protokollok

Alapveto adattovabbitasi protokollok

TCP (Transmission Control Protocol)

* Megbizhatd: A TCP biztositja az adatok pontos, sorrendben torténd kézbesitését,
visszaigazolasok és Ujrakildések segitségével.

» Kapcsolatorientalt: A kommunikacié megkezdése el6tt kapcsolatot kell [étesiteni a két fél
kozott.

» Aramlasszabalyozas és zstfoltsagkezelés: Szabalyozza az adatétvitel sebességét a haldzat
és a végpontok aktualis allapota alapjan.

e Alkalmazasok: Webbongészés (HTTP/HTTPS), e-mail (SMTP, IMAP/POP3), fajlatvitel (FTP), és
mas, a megbizhat6 adatatvitelt igényld alkalmazasok.

UDP (User Datagram Protocol)

Nem megbizhatd: Nem garantalja az adatok sorrendjét vagy sikeres kézbesitését; nincs
csomag Ujrakildés vagy csomagsorrend helyreallitas.

Kapcsolatmentes: Nem igényel el6zetes kapcsolatfelépitést az adatok kiildése elétt, lehetévé
téve a gyors adattovabbitast. E miatt valds idejl adattovabbitast biztosit.

Konnyusulyu: Kevesebb fejlécinformaciot hasznal, ami kevesebb haldzati terhelést jelent. 8
byte a fejléc mindossze.

Alkalmazasok: Streaming média (vided, audio), online jatékok, VolP (Voice over Internet
Protocol), IOT (Internet of Things) és mas id6kritikus alkalmazasok, ahol a sebesség fontosabb,
mint a megbizhatdésag.

QUIC (Quick UDP Internet Connections) (2021-es szabvany)

e Multiplexalt adatfolyam: Egyetlen QUIC-kapcsolat tobb adatfolyamot is képes kezelni, ezaltal
csokkentve az ugynevezett “fejlécblokkolast”, ami a TCP kapcsolatokban el6fordulhat.

e Parhuzamos adatatvitel: A QUIC lehetdvé teszi tobb adatfolyam egyidejli Iétrehozasat és
kezelését egyetlen kapcsolaton belll. Ez javitja az adatatvitel hatékonysagat, mivel az egyik
folyam atmeneti késése vagy blokkolasa nem akadalyozza a tobbi folyam adatatvitelét.

 Fiiggetlen hiba- és aramlasszabadlyozas: Minden QUIC-adatfolyam sajat hiba- és
aramlasszabalyozassal rendelkezik, ami azt jelenti, hogy egy folyam problémai nem
befolyasoljak a tobbi adatfolyam teljesitményét.

e Dinamikus prioritasok: A QUIC lehet6vé teszi az adatfolyamok prioritasanak dinamikus
maddositasat, amely segit optimalizalni az er6forrasok felhasznalasat és javitja az alkalmazasok
valaszidejét.

« Titkositds: A QUIC alapértelmezés szerint biztositja az adatok végponttdl végpontig torténd
titkositasat, hasznalva a TLS (Transport Layer Security) legUjabb verzidit, ezaltal javitva az
adatbiztonsagot.

» Kapcsolat migracio: A QUIC képes fenntartani egy aktiv kapcsolatot még akkor is, ha a
felhasznald eszkoze haldzatot valt (példaul Wi-Fi-r6l mobil adatra), ami folyamatosabb élményt
nyujt a mobil felhasznalék szamara.

o Alkalmazasok: A QUIC-t széles kérben haszndljak webbdngészéshez, vided streaminghez,
online jatékokhoz, IOT (Internet of Things) és mas, nagy sebességl és megbizhatésagot igényld
internetes alkalmazasokhoz.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:

2024/03/02

10:13

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374382

tovabbi részletesebb informacid

Gyakorlé feladat

Készitsen egy egyszer(sitett FTP (file transport) klienst és szervert, amelynél a kliens elkildhet vagy
letdlthet széveges file-okat a szerverrdl. Altaldnos funkcié leiras:

1.
2.
3.

4.
5.

) Kliens becsatlakozik a szerverhez és kiild egy listazas (izenetet

) Szerver visszakildi a tarolt file-ok listdjat (vagy el6z6leg feltoltott file-ok listajat)

) Kliens kilistdzza a fileokat, és bekéri a felhasznalétdl, hogy milyen mUveletet szeretne
végezni? Feltoltés vagy letoltés? (‘u' vagy 'd')

) Mindkét esetben be kell irni a file nevét kiterjesztéssel egytt

) A kliens elkiildi a szerverre a kivalasztott file-t, vagy letélti a kivalasztott file-t egy adott
konyvtarba.

Szerver nézépont:

1.

) Becsatlakozas utan felolvassa a file-okat a /store alkdnyvtarbdl és a listazas Gzenet
megérkezése utan a fajlneveket elkildi a kliensnek.

.) Varakozunk a kliens 'u' vagy 'd' mlveletére

) Klienstdl kapunk egy filenevet és ha 'd' (download) a mivelet, akkor felolvassuk a file-t és
visszakldjik a tartalmat

) Ha a mdvelet 'u' (feltdltés), akkor nyitunk egy Uj file-t a megadott néven és varjuk az adatokat,
amiket kiirunk a file-ba.

Kliens nézopont

1.

Uik wnN

) A kliens becsatlakozik és varja a visszajovo fajlok listajat, majd ha megjon akkor kiirjuk a
konzolra

) Bekérjik a “u” vagy “d” billenty(it

) Majd kérjik a file-nevet is.

) a kliens a /files kdnvytarabdl olvassa a file-okat, vagy a letoltott file-t is ide hozza létre

) “d” billenty(esetén létrehozza a /files/<filename> allomanyt és a szerverrdl jov0 adatokat
beleirja

) “u” billenty(esetén a /files/<filename> allomanyt elkilldi a szervernek

Kiinduld mintak

1.) Hagyomanyos blokkolt TCP alapu socket szerver

Socket szerver kod

import java.io.IOException;
import java.io.ObjectInputStream;

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

https://www.debugbear.com/blog/http3-quic-protocol-guide

2026/02/16 09:01 3/7 Alapvet6 adattovabbitasi protokollok

import java.io.ObjectOutputStream;
import java.net.ServerSocket;
import java.net.Socket;
public class Server {
ServerSocket providerSocket;
Socket connection = null;
ObjectOutputStream out;
ObjectInputStream in;
String message;
Server() {
}
void run() {
try {
// 1. szerver socket létrehozdsa
providerSocket = new ServerSocket(8080);
// 2. kapcsolédasra varakozas
connection = providerSocket.accept();
// 3. Input és Output streamek megadasa

out = new ObjectOutputStream(connection.getOutputStream());
in = new ObjectInputStream(connection.getInputStream());

// 4. socket kommunikdacid
do {
try {
message = (String) in.readObject();
System.out.println("client>" + message);
if (message.equals("bye")) {
sendMessage("bye");
}
} catch (ClassNotFoundException classnot) {
System.err.println("Data received in unknown
format");
}
} while (!message.equals("bye"));
} catch (IOException ioException) {
ioException.printStackTrace();
} finally {
// 4: kapcsolat lezdarasa
try {
in.close();
out.close();
providerSocket.close();
} catch (IOException ioException) {
ioException.printStackTrace();
}
}
}
void sendMessage(String msg) {
try {
out.writeObject(msg);
out.flush();
System.out.println("server>" + msgqg);

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/02
10:13

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374382

} catch (IOException ioException) {
ioException.printStackTrace();
}
}

public static void main(String args[]) {
Server server = new Server();
while (true) {
server.run();

}

Socket kliens kod

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.Socket;
import java.net.UnknownHostException;
public class Client {
Socket requestSocket;
ObjectOutputStream out;
ObjectInputStream in;
String message;
Client() {
}
void run() {
try {
// 1. socket kapcsolat létrehozasa
requestSocket = new Socket("localhost", 8080);
// 2. Input and OQutput streamek
out = new
ObjectOutputStream(requestSocket.getOQutputStream());
in = new ObjectInputStream(requestSocket.getInputStream());
// 3: Kommunikacid
do {
try {
sendMessage("Hello szerver");
sendMessage("bye");
message = (String) in.readObject();
} catch (Exception e) {
System.err.println("data received in unknown
format");
}
} while (!message.equals("bye"));
} catch (UnknownHostException unknownHost) {
System.err.println("You are trying to connect to an unknown

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

2026/02/16 09:01 5/7 Alapvet6 adattovabbitasi protokollok

host!");

} catch (IOException ioException) {
ioException.printStackTrace();
} finally {
// 4: Kapcsolat zarasa
try {
in.close();
out.close();
requestSocket.close();
} catch (IOException ioException) {
ioException.printStackTrace();

}
}
}
void sendMessage(String msg) A{
try {
out.writeObject(msg);
out.flush();
System.out.println("client>" + msgqg);
} catch (IOException ioException) {
ioException.printStackTrace();
}
}

public static void main(String args([]) {
Client client = new Client();
client.run();

2.) Hagyomanyos UDP alapu kommunikacio

2.a) Az alabbi Agens kiild egy lizenetet és a 8080-as porton varja a valaszt ra, ugyancsak UDP-vel. Az
eclipse fejlesztékdrnyezetben a consolon beirt szoveget ctri+z letitésével lehet elklldeni.

Feladat: mddositsuk a kddot, hogy at tudjon kuldeni egy beégetett nev, és létezo, 2 kbyte-nal
nagyobb szoveges vagy kép allomanyt és ellendrizziik a sikeres kuldést.

package org.ait;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class UDPClient {

public static void main(String args[]) throws Exception {
BufferedReader inFromUser = new BufferedReader (new
InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/02
10:13

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374382

InetAddress IPAddress = InetAddress.getByName("localhost");

byte[] sendData = new byte[1024];

byte[] receiveData = new byte[1024];

String sentence = inFromUser.readlLine();

sendData = sentence.getBytes();

DatagramPacket sendPacket = new DatagramPacket(sendData,
sendData.length, IPAddress, 8080);

clientSocket.send(sendPacket) ;

DatagramPacket receivePacket = new DatagramPacket(receiveData,
receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence = new String(receivePacket.getData());

System.out.println("atalakitva:" + modifiedSentence);

clientSocket.close();

2.b) Az UDP szerver a 8080-as porton varja az agensek (izeneteit és nagybetlre konvertalva
visszakuldi a kliens UDP socketre.

package org.ait;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class UDPServer {

public static void main(String args[]) throws Exception {

DatagramSocket serverSocket = new DatagramSocket(8080);
byte[] bytesReceived = new byte[1024];
byte[] bytesSent = new byte[1024];

DatagramPacket receivePacket = new DatagramPacket (bytesReceived,

bytesReceived. length);
// itt varakozik ameddig adat jon a 8080-as porton
serverSocket.receive(receivePacket);
String szoveg = new String(receivePacket.getData());
System.out.println("kaptam: " + szoveq);
InetAddress IPAddress = receivePacket.getAddress();
int port = receivePacket.getPort();
String nagybet(sSzoveg = szoveg.toUpperCase();
bytesSent = nagybet(isSzoveg.getBytes();
// visszakuldi
DatagramPacket sendPacket = new DatagramPacket(bytesSent,
bytesSent.length, IPAddress, port);
serverSocket.send(sendPacket);
serverSocket.close();

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

2026/02/16 09:01 777 Alapvet6 adattovabbitasi protokollok

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:

Last update: 2024/03/02 10:13

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374382

	Alapvető adattovábbítási protokollok
	TCP (Transmission Control Protocol)
	UDP (User Datagram Protocol)
	QUIC (Quick UDP Internet Connections) (2021-es szabvány)
	Gyakorló feladat
	Kiinduló minták
	1.) Hagyományos blokkolt TCP alapú socket szerver
	Socket szerver kód
	Socket kliens kód

	2.) Hagyományos UDP alapú kommunikáció

