2026/02/16 09:01 1/7 Alapvet6 adattovabbitasi protokollok

Alapveto adattovabbitasi protokollok

TCP (Transmission Control Protocol)

* Megbizhatd: A TCP biztositja az adatok pontos, sorrendben torténd kézbesitését,
visszaigazolasok és Ujrakildések segitségével.

» Kapcsolatorientalt: A kommunikacié megkezdése el6tt kapcsolatot kell [étesiteni a két fél
kozott.

» Aramlasszabalyozas és zstfoltsagkezelés: Szabalyozza az adatétvitel sebességét a haldzat
és a végpontok aktualis allapota alapjan.

e Alkalmazasok: Webbongészés (HTTP/HTTPS), e-mail (SMTP, IMAP/POP3), fajlatvitel (FTP), és
mas, a megbizhat6 adatatvitelt igényld alkalmazasok.

UDP (User Datagram Protocol)

Nem megbizhatd: Nem garantalja az adatok sorrendjét vagy sikeres kézbesitését; nincs
csomag Ujrakildés vagy csomagsorrend helyreallitas.

Kapcsolatmentes: Nem igényel el6zetes kapcsolatfelépitést az adatok kiildése elétt, lehetévé
téve a gyors adattovabbitast. E miatt valds idejl adattovabbitast biztosit.

Konnyusulyu: Kevesebb fejlécinformaciot hasznal, ami kevesebb haldzati terhelést jelent. 8
byte a fejléc mindossze.

Alkalmazasok: Streaming média (vided, audio), online jatékok, VolP (Voice over Internet
Protocol), IOT (Internet of Things) és mas id6kritikus alkalmazasok, ahol a sebesség fontosabb,
mint a megbizhatdésag.

QUIC (Quick UDP Internet Connections) (2021-es szabvany)

e Parhuzamos, Multiplexalt adatfolyam: Egyetlen QUIC-kapcsolat tobb adatfolyamot is képes
kezelni, ezaltal csokkentve az Ugynevezett “fejlécblokkoldst”, ami a TCP kapcsolatokban
eléfordulhat.

* Fuggetlen hiba- és aramlasszabalyozas: Minden QUIC-adatfolyam sajat hiba- és
aramlasszabalyozassal rendelkezik, ami azt jelenti, hogy egy folyam problémai nem
befolyasoljak a tobbi adatfolyam teljesitményét.

e Dinamikus prioritasok: A QUIC lehet6vé teszi az adatfolyamok prioritdsanak dinamikus
maédositasat, amely segit optimalizalni az er6forrasok felhasznalasat és javitja az alkalmazasok
valaszidejét.

 Titkositas: A QUIC alapértelmezés szerint biztositja az adatok végponttdl végpontig torténd
titkositasat, haszndlva a TLS (Transport Layer Security) legujabb verzidit, ezaltal javitva az
adatbiztonsagot.

» Kapcsolat migracio: A QUIC képes fenntartani egy aktiv kapcsolatot még akkor is, ha a
felhaszndald eszkoze haldzatot valt (példaul Wi-Fi-rél mobil adatra), ami folyamatosabb éiményt
nyujt a mobil felhasznaldk szamara.

e Alkalmazasok: A QUIC-t széles kérben hasznaljak webbdngészéshez, vide6 streaminghez,
online jatékokhoz, 10T (Internet of Things) és mas, nagy sebességl és megbizhatdsagot igényld
internetes alkalmazasokhoz.

tovabbi részletesebb informacid

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://www.debugbear.com/blog/http3-quic-protocol-guide

Last
update:

2024/03/02

10:14

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374446

Gyakorlé feladat

Készitsen egy egyszerdsitett FTP (file transport) klienst és szervert, amelynél a kliens elkildhet vagy
letdlthet széveges file-okat a szerverrél. Altaldnos funkcié leiras:

1.
2.
3.

4.
5.

) Kliens becsatlakozik a szerverhez és kuld egy listazas lGzenetet

) Szerver visszakildi a tarolt file-ok listajat (vagy el6z6leg feltdltott file-ok listajat)

) Kliens kilistdzza a fileokat, és bekéri a felhaszndlétél, hogy milyen miveletet szeretne
végezni? Feltoltés vagy letdltés? (‘u' vagy 'd')

) Mindkét esetben be kell irni a file nevét kiterjesztéssel egytt

) A kliens elkiildi a szerverre a kivalasztott file-t, vagy letdlti a kivalasztott file-t egy adott
kényvtarba.

Szerver nézopont:

1.

) Becsatlakozas utan felolvassa a file-okat a /store alkdnyvtarbdl és a listazas Gzenet
megérkezése utan a fajlneveket elkiildi a kliensnek.

.) Varakozunk a kliens 'u' vagy 'd' muiveletére
.) Klienstdl kapunk egy filenevet és ha 'd' (download) a mivelet, akkor felolvassuk a file-t és

visszakuldjlk a tartalmat
) Ha a mUvelet 'u' (feltdltés), akkor nyitunk egy Uj file-t a megadott néven és varjuk az adatokat,
amiket kiirunk a file-ba.

Kliens nézoépont

1.

vk wnN

) A kliens becsatlakozik és varja a visszajovo fajlok listajat, majd ha megjon akkor kiirjuk a
konzolra

) Bekérjik a “u” vagy “d” billentyt

) Majd kérjik a file-nevet is.

) a kliens a /files konvytarabdl olvassa a file-okat, vagy a letoltott file-t is ide hozza létre

) “d” billenty(esetén létrehozza a /files/<filename> allomanyt és a szerverrdl jov6 adatokat
beleirja

) “u” billenty(esetén a /files/<filename> allomanyt elklldi a szervernek

Kiinduld mintak

1.) Hagyomanyos blokkolt TCP alapu socket szerver

Socket szerver kod

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.ServerSocket;
import java.net.Socket;

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

2026/02/16 09:01 3/7 Alapvet6 adattovabbitasi protokollok

public class Server {
ServerSocket providerSocket;
Socket connection = null;
ObjectOutputStream out;
ObjectInputStream in;
String message;
Server() {
}
void run() {
try {
// 1. szerver socket létrehozasa
providerSocket = new ServerSocket(8080);
// 2. kapcsoldédasra varakozas
connection = providerSocket.accept();
// 3. Input és Output streamek megadasa
out = new ObjectOutputStream(connection.getOutputStream());
in = new ObjectInputStream(connection.getInputStream());
// 4. socket kommunikdcié
do {
try {
message = (String) in.readObject();
System.out.println("client>" + message);
if (message.equals("bye")) {
sendMessage("bye");
}
} catch (ClassNotFoundException classnot) {
System.err.println("Data received in unknown
format") ;
}
} while (!message.equals("bye"));
} catch (IOException ioException) {
ioException.printStackTrace();
} finally {
// 4: kapcsolat lezarasa
try {
in.close();
out.close();
providerSocket.close();
} catch (IOException ioException) {
ioException.printStackTrace();
}
}
}
void sendMessage(String msg) {
try {
out.writeObject(msg);
out.flush();
System.out.println("server>" + msq);
} catch (IOException ioException) {
ioException.printStackTrace();

}

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/02
10:14

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374446

}

public static void main(String args[]) {
Server server = new Server();
while (true) {
server.run();

}

Socket kliens kod

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.Socket;
import java.net.UnknownHostException;
public class Client {
Socket requestSocket;
ObjectOutputStream out;
ObjectInputStream in;
String message;
Client() {
¥
void run() {
try {
// 1. socket kapcsolat létrehozasa
requestSocket = new Socket("localhost", 8080);
// 2. Input and OQutput streamek
out = new
ObjectOutputStream(requestSocket.getOutputStream());
in = new ObjectInputStream(requestSocket.getInputStream());
// 3: Kommunikdcié
do {
try {
sendMessage("Hello szerver");
sendMessage("bye");
message = (String) in.readObject();
} catch (Exception e) {
System.err.println("data received in unknown

format");
}
} while (!message.equals("bye"));
} catch (UnknownHostException unknownHost) {
System.err.println("You are trying to connect to an unknown
host!");

} catch (IOException ioException) {
ioException.printStackTrace();

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

2026/02/16 09

:01

5/7 Alapvet6 adattovabbitasi protokollok

} finally {

}

}

// 4: Kapcsolat zdaréasa

try {
in.close();
out.close();
requestSocket.close();

} catch (IOException ioException) {
ioException.printStackTrace();

}

void sendMessage(String msg) {
try {

out.writeObject(msg);
out.flush();
System.out.println("client>" + msqg);

} catch (IOException ioException) {

}

}

ioException.printStackTrace();

public static void main(String args[]) {
Client client = new Client();
client.run();

2.) Hagyomdanyos UDP alapu kommunikacio

2.a) Az alabbi Agens kiild egy iizenetet és a 8080-as porton vérja a valaszt ra, ugyancsak UDP-vel. Az
eclipse fejlesztékornyezetben a consolon beirt szoveget ctri+z letitésével lehet elklldeni.

Feladat: mddositsuk a kédot, hogy at tudjon killdeni egy beégetett nev, és |étez6, 2 kbyte-nal
nagyobb szdveges vagy kép allomanyt és ellendrizziik a sikeres kildést.

packag
import
import
import
import
import
public

e org

.ait;
java.
java.
java.
java.
java.

io.BufferedReader;
io.InputStreamReader;
net.DatagramPacket;
net.DatagramSocket;
net.InetAddress;

class UDPClient {

public static void main(String args[]) throws Exception {
BufferedReader inFromUser = new BufferedReader(new
InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();
InetAddress IPAddress = InetAddress.getByName("localhost");
byte[] sendData = new byte[1024];

byte[] receiveData = new byte[1024];

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/02
10:14

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374446

String sentence = inFromUser.readlLine();

sendData = sentence.getBytes();

DatagramPacket sendPacket = new DatagramPacket(sendData,
sendData. length, IPAddress, 8080);

clientSocket.send(sendPacket);

DatagramPacket receivePacket = new DatagramPacket(receiveData,
receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence = new String(receivePacket.getData());

System.out.println("dtalakitva:" + modifiedSentence);

clientSocket.close();

2.b) Az UDP szerver a 8080-as porton varja az dgensek lizeneteit és nagybetlre konvertalva
visszakuldi a kliens UDP socketre.

package org.ait;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class UDPServer {

public static void main(String args[]) throws Exception {
DatagramSocket serverSocket = new DatagramSocket(8080);
byte[] bytesReceived = new byte[1024];
byte[] bytesSent = new byte[1024];
DatagramPacket receivePacket = new DatagramPacket (bytesReceived,
bytesReceived. length);
// itt vdrakozik ameddig adat jon a 8080-as porton
serverSocket.receive(receivePacket);
String szoveg = new String(receivePacket.getData());
System.out.println("kaptam: " + szoveg);
InetAddress IPAddress = receivePacket.getAddress();
int port = receivePacket.getPort();
String nagybet(isSzoveg = szoveg.toUpperCase();
bytesSent = nagybet(isSzoveg.getBytes();
// visszakuldi
DatagramPacket sendPacket = new DatagramPacket (bytesSent,
bytesSent.length, IPAddress, port);

serverSocket.send(sendPacket) ;
serverSocket.close();

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

2026/02/16 09:01 777 Alapvet6 adattovabbitasi protokollok

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374446 “J:

Last update: 2024/03/02 10:14

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709374446

	Alapvető adattovábbítási protokollok
	TCP (Transmission Control Protocol)
	UDP (User Datagram Protocol)
	QUIC (Quick UDP Internet Connections) (2021-es szabvány)
	Gyakorló feladat
	Kiinduló minták
	1.) Hagyományos blokkolt TCP alapú socket szerver
	Socket szerver kód
	Socket kliens kód

	2.) Hagyományos UDP alapú kommunikáció

