2026/02/16 09:01 1/7 Alapvet6 adattovabbitasi protokollok

Alapveto adattovabbitasi protokollok

TCP (Transmission Control Protocol)

* Megbizhatd: A TCP biztositja az adatok pontos, sorrendben torténd kézbesitését,
visszaigazolasok és Ujrakildések segitségével.

» Kapcsolatorientalt: A kommunikacié megkezdése el6tt kapcsolatot kell [étesiteni a két fél
kozott.

» Aramlasszabalyozas és zstfoltsagkezelés: Szabalyozza az adatétvitel sebességét a haldzat
és a végpontok aktualis allapota alapjan.

e Alkalmazasok: Webbongészés (HTTP/HTTPS), e-mail (SMTP, IMAP/POP3), fajlatvitel (FTP), és
mas, a megbizhat6 adatatvitelt igényld alkalmazasok.

UDP (User Datagram Protocol)

Nem megbizhatd: Nem garantalja az adatok sorrendjét vagy sikeres kézbesitését; nincs
csomag Ujrakildés vagy csomagsorrend helyreallitas.

Kapcsolatmentes: Nem igényel el6zetes kapcsolatfelépitést az adatok kiildése elétt, lehetévé
téve a gyors adattovabbitast. E miatt valds idejl adattovabbitast biztosit.

Konnyusulyu: Kevesebb fejlécinformaciot hasznal, ami kevesebb haldzati terhelést jelent. 8
byte a fejléc mindossze.

Alkalmazasok: Streaming média (vided, audio), online jatékok, VolP (Voice over Internet
Protocol), IOT (Internet of Things) és mas id6kritikus alkalmazasok, ahol a sebesség fontosabb,
mint a megbizhatdésag.

QUIC (Quick UDP Internet Connections) (2021-es szabvany)

e Parhuzamos, Multiplexalt adatfolyam: Egyetlen QUIC-kapcsolat tobb adatfolyamot is képes
kezelni, ezaltal csokkentve az Ugynevezett “fejlécblokkoldst”, ami a TCP kapcsolatokban
eléfordulhat.

* Fuggetlen hiba- és aramlasszabalyozas: Minden QUIC-adatfolyam sajat hiba- és
aramlasszabalyozassal rendelkezik, ami azt jelenti, hogy egy folyam problémai nem
befolyasoljak a tobbi adatfolyam teljesitményét.

e Dinamikus prioritasok: A QUIC lehet6vé teszi az adatfolyamok prioritdsanak dinamikus
maédositasat, amely segit optimalizalni az er6forrasok felhasznalasat és javitja az alkalmazasok
valaszidejét.

 Titkositas: A QUIC alapértelmezés szerint biztositja az adatok végponttdl végpontig torténd
titkositasat, haszndlva a TLS (Transport Layer Security) legujabb verzidit, ezaltal javitva az
adatbiztonsagot.

» Kapcsolat migracio: A QUIC képes fenntartani egy aktiv kapcsolatot még akkor is, ha a
felhaszndald eszkoze haldzatot valt (példaul Wi-Fi-rél mobil adatra), ami folyamatosabb éiményt
nyujt a mobil felhasznaldk szamara.

e Alkalmazasok: A QUIC-t széles kérben hasznalhatd (a normal bongészésen kivil) vided
streaminghez, online jatékokhoz, 10T (Internet of Things) és mas, nagy sebességli és
megbizhatdésagot igényld internetes alkalmazasokhoz.

tovabbi részletesebb informacid

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://www.debugbear.com/blog/http3-quic-protocol-guide

Last
update:

2024/03/06

08:32

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709713971

Gyakorlé feladat

Készitsen egy egyszerdsitett FTP (file transport) klienst és szervert, amelynél a kliens elkildhet vagy
letdlthet széveges file-okat a szerverrél. Altaldnos funkcié leiras:

1.
2.
3.

4.
5.

) Kliens becsatlakozik a szerverhez és kuld egy listazas lGzenetet

) Szerver visszakildi a tarolt file-ok listajat (vagy el6z6leg feltdltott file-ok listajat)

) Kliens kilistdzza a fileokat, és bekéri a felhaszndlétél, hogy milyen miveletet szeretne
végezni? Feltoltés vagy letdltés? (‘u' vagy 'd')

) Mindkét esetben be kell irni a file nevét kiterjesztéssel egytt

) A kliens elkiildi a szerverre a kivalasztott file-t, vagy letdlti a kivalasztott file-t egy adott
kényvtarba.

Szerver nézopont:

1.

) Becsatlakozas utan felolvassa a file-okat a /store alkdnyvtarbdl és a listazas Gzenet
megérkezése utan a fajlneveket elkiildi a kliensnek.

.) Varakozunk a kliens 'u' vagy 'd' muiveletére
.) Klienstdl kapunk egy filenevet és ha 'd' (download) a mivelet, akkor felolvassuk a file-t és

visszakuldjlk a tartalmat
) Ha a mUvelet 'u' (feltdltés), akkor nyitunk egy Uj file-t a megadott néven és varjuk az adatokat,
amiket kiirunk a file-ba.

Kliens nézoépont

1.

vk wnN

) A kliens becsatlakozik és varja a visszajovo fajlok listajat, majd ha megjon akkor kiirjuk a
konzolra

) Bekérjik a “u” vagy “d” billentyt

) Majd kérjik a file-nevet is.

) a kliens a /files konvytarabdl olvassa a file-okat, vagy a letoltott file-t is ide hozza létre

) “d” billenty(esetén létrehozza a /files/<filename> allomanyt és a szerverrdl jov6 adatokat
beleirja

) “u” billenty(esetén a /files/<filename> allomanyt elklldi a szervernek

Kiinduld mintak

1.) Hagyomanyos blokkolt TCP alapu socket szerver

Socket szerver kod

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.ServerSocket;
import java.net.Socket;

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

2026/02/16 09:01 3/7 Alapvet6 adattovabbitasi protokollok

public class Server {
ServerSocket providerSocket;
Socket connection = null;
ObjectOutputStream out;
ObjectInputStream in;
String message;
Server() {
}
void run() {
try {
// 1. szerver socket létrehozasa
providerSocket = new ServerSocket(8080);
// 2. kapcsoldédasra varakozas
connection = providerSocket.accept();
// 3. Input és Output streamek megadasa
out = new ObjectOutputStream(connection.getOutputStream());
in = new ObjectInputStream(connection.getInputStream());
// 4. socket kommunikdcié
do {
try {
message = (String) in.readObject();
System.out.println("client>" + message);
if (message.equals("bye")) {
sendMessage("bye");
}
} catch (ClassNotFoundException classnot) {
System.err.println("Data received in unknown
format") ;
}
} while (!message.equals("bye"));
} catch (IOException ioException) {
ioException.printStackTrace();
} finally {
// 4: kapcsolat lezarasa
try {
in.close();
out.close();
providerSocket.close();
} catch (IOException ioException) {
ioException.printStackTrace();
}
}
}
void sendMessage(String msg) {
try {
out.writeObject(msg);
out.flush();
System.out.println("server>" + msq);
} catch (IOException ioException) {
ioException.printStackTrace();

}

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/06
08:32

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709713971

}
public static void main(String args[]) {
Server server = new Server();
while (true) {
server.run();

}

Socket kliens kod

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.Socket;
import java.net.UnknownHostException;
public class Client {
Socket requestSocket;
ObjectOutputStream out;
ObjectInputStream in;
String message;
Client() {
¥

void run() {
try {
// 1. socket kapcsolat létrehozasa
requestSocket = new Socket("localhost", 8080);
// 2. Input and OQutput streamek
out = new
ObjectOutputStream(requestSocket.getOutputStream());
in = new ObjectInputStream(requestSocket.getInputStream());
// 3: Kommunikdcié
do {
try {
sendMessage("Hello szerver");
sendMessage("bye");
message = (String) in.readObject();
} catch (Exception e) {
System.err.println("data received in unknown

format");
}
} while (!message.equals("bye"));
} catch (UnknownHostException unknownHost) {
System.err.println("You are trying to connect to an unknown
host!");

} catch (IOException ioException) {
ioException.printStackTrace();

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

2026/02/16 09:01 5/7 Alapvet6 adattovabbitasi protokollok

} finally {

// 4: Kapcsolat zdaréasa

try {
in.close();
out.close();
requestSocket.close();

} catch (IOException ioException) {
ioException.printStackTrace();

}
}
}
void sendMessage(String msg) {
try {
out.writeObject(msg);
out.flush();
System.out.println("client>" + msqg);
} catch (IOException ioException) {
ioException.printStackTrace();
}
}

public static void main(String args[]) {
Client client = new Client();
client.run();

2.) Hagyomdanyos UDP alapu kommunikacio

2.a) Az alabbi Agens kiild egy iizenetet és a 8080-as porton vérja a valaszt ra, ugyancsak UDP-vel.
Megjegyzés: az Eclipse fejlesztékérnyezetben a consolon beirt széveget ctri+z lelitésével lehet
elkuldeni.

Feladat: mddositsuk a kddot, hogy at tudjon kildeni egy beégetett nev, és létez6, 2 kbyte-nal
nagyobb szoveges vagy kép allomanyt és ellendrizziik a sikeres kildést.

package org.ait;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class Componenetl {

public static void main(String args[]) throws Exception {
BufferedReader inFromUser = new BufferedReader(new
InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();
InetAddress IPAddress = InetAddress.getByName("localhost");
byte[] sendData = new byte[1024];

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/06
08:32

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709713971

byte[] receiveData = new byte[1024];

String sentence = inFromUser.readlLine();

sendData = sentence.getBytes();

DatagramPacket sendPacket = new DatagramPacket(sendData,
sendData.length, IPAddress, 8080);

clientSocket.send(sendPacket) ;

DatagramPacket receivePacket = new DatagramPacket(receiveData,
receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence = new String(receivePacket.getData());

System.out.println("atalakitva:" + modifiedSentence);

clientSocket.close();

2.b) A masik UDP komponens a 8080-as porton varja az agens Ulzeneteit és nagybetlre konvertalva
visszakildi a Componentl UDP socket-ére.

package org.ait;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class Component2 {

public static void main(String args[]) throws Exception {
DatagramSocket serverSocket = new DatagramSocket(8080);
byte[] bytesReceived = new byte[1024];
byte[] bytesSent = new byte[1024];
DatagramPacket receivePacket = new DatagramPacket(bytesReceived,
bytesReceived. length);
// itt vdrakozik ameddig adat jon a 8080-as porton
serverSocket.receive(receivePacket);
String szoveg = new String(receivePacket.getData());
System.out.println("kaptam: " + szoveq);
InetAddress IPAddress = receivePacket.getAddress();
int port = receivePacket.getPort();
String nagybet(isSzéveg = szoveg.toUpperCase();
bytesSent = nagybet(isSzoveg.getBytes();
// visszakuldi
DatagramPacket sendPacket = new DatagramPacket(bytesSent,
bytesSent.length, IPAddress, port);

serverSocket.send(sendPacket);
serverSocket.close();

Ha egy nagyméret(i adatot szeretnénk elkildeni, egyben nem tudjuk megtenni, mert nem fér bele
egy UDP csomagba. llyenkor egy ciklusban fel kell térdelni pl. 1024 byte hosszl darabokra és ezt kell

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

2026/02/16 09:01 717 Alapvet6 adattovabbitasi protokollok

atkuldeni a szervernek. A szerveren ugyanigy egy ciklusban kell beolvasni a byte-okat és 6sszeflizni
az 1024 byte-os darabokat.

De ekkor még egy problémat meg kell oldani: honnan tudjuk hogy mekkora a tényleges méret?

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent ||nk

Last update: 2024/03/06 08:32

=i .;.;._-..-,—:..,.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709713971

	Alapvető adattovábbítási protokollok
	TCP (Transmission Control Protocol)
	UDP (User Datagram Protocol)
	QUIC (Quick UDP Internet Connections) (2021-es szabvány)
	Gyakorló feladat
	Kiinduló minták
	1.) Hagyományos blokkolt TCP alapú socket szerver
	Socket szerver kód
	Socket kliens kód

	2.) Hagyományos UDP alapú kommunikáció

