
2026/02/16 09:01 1/7 Alapvető adattovábbítási protokollok

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Alapvető adattovábbítási protokollok

TCP (Transmission Control Protocol)

Megbízható: A TCP biztosítja az adatok pontos, sorrendben történő kézbesítését,
visszaigazolások és újraküldések segítségével.
Kapcsolatorientált: A kommunikáció megkezdése előtt kapcsolatot kell létesíteni a két fél
között.
Áramlásszabályozás és zsúfoltságkezelés: Szabályozza az adatátvitel sebességét a hálózat
és a végpontok aktuális állapota alapján.
Alkalmazások: Webböngészés (HTTP/HTTPS), e-mail (SMTP, IMAP/POP3), fájlátvitel (FTP), és
más, a megbízható adatátvitelt igénylő alkalmazások.

UDP (User Datagram Protocol)

Nem megbízható: Nem garantálja az adatok sorrendjét vagy sikeres kézbesítését; nincs
csomag újraküldés vagy csomagsorrend helyreállítás.
Kapcsolatmentes: Nem igényel előzetes kapcsolatfelépítést az adatok küldése előtt, lehetővé
téve a gyors adattovábbítást. E miatt valós idejű adattovábbítást biztosít.
Könnyűsúlyú: Kevesebb fejlécinformációt használ, ami kevesebb hálózati terhelést jelent. 8
byte a fejléc mindössze.
Alkalmazások: Streaming média (videó, audio), online játékok, VoIP (Voice over Internet
Protocol), IOT (Internet of Things) és más időkritikus alkalmazások, ahol a sebesség fontosabb,
mint a megbízhatóság.

QUIC (Quick UDP Internet Connections) (2021-es szabvány)

Párhuzamos, Multiplexált adatfolyam: Egyetlen QUIC-kapcsolat több adatfolyamot is képes
kezelni, ezáltal csökkentve az úgynevezett “fejlécblokkolást”, ami a TCP kapcsolatokban
előfordulhat.
Független hiba- és áramlásszabályozás: Minden QUIC-adatfolyam saját hiba- és
áramlásszabályozással rendelkezik, ami azt jelenti, hogy egy folyam problémái nem
befolyásolják a többi adatfolyam teljesítményét.
Dinamikus prioritások: A QUIC lehetővé teszi az adatfolyamok prioritásának dinamikus
módosítását, amely segít optimalizálni az erőforrások felhasználását és javítja az alkalmazások
válaszidejét.
Titkosítás: A QUIC alapértelmezés szerint biztosítja az adatok végponttól végpontig történő
titkosítását, használva a TLS (Transport Layer Security) legújabb verzióit, ezáltal javítva az
adatbiztonságot.
Kapcsolat migráció: A QUIC képes fenntartani egy aktív kapcsolatot még akkor is, ha a
felhasználó eszköze hálózatot vált (például Wi-Fi-ről mobil adatra), ami folyamatosabb élményt
nyújt a mobil felhasználók számára.
Alkalmazások: A QUIC-t széles körben használható (a normál böngészésen kívül) videó
streaminghez, online játékokhoz, IOT (Internet of Things) és más, nagy sebességű és
megbízhatóságot igénylő internetes alkalmazásokhoz.

további részletesebb információ

https://www.debugbear.com/blog/http3-quic-protocol-guide

Last
update:
2024/03/06
08:33

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709714009

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

Gyakorló feladat

Készítsen egy egyszerűsített FTP (file transport) klienst és szervert, amelynél a kliens elküldhet vagy
letölthet szöveges file-okat a szerverről. Általános funkció leírás:

) Kliens becsatlakozik a szerverhez és küld egy listázás üzenetet1.
) Szerver visszaküldi a tárolt file-ok listáját (vagy előzőleg feltöltött file-ok listáját)2.
) Kliens kilistázza a fileokat, és bekéri a felhasználótól, hogy milyen műveletet szeretne3.
végezni? Feltöltés vagy letöltés? ('u' vagy 'd')
) Mindkét esetben be kell írni a file nevét kiterjesztéssel együtt4.
) A kliens elküldi a szerverre a kiválasztott file-t, vagy letölti a kiválasztott file-t egy adott5.
könyvtárba.

Szerver nézőpont:

) Becsatlakozás után felolvassa a file-okat a /store alkönyvtárból és a listázás üzenet1.
megérkezése után a fájlneveket elküldi a kliensnek.
) Várakozunk a kliens 'u' vagy 'd' műveletére2.
) Klienstől kapunk egy filenevet és ha 'd' (download) a művelet, akkor felolvassuk a file-t és3.
visszaküldjük a tartalmát
) Ha a művelet 'u' (feltöltés), akkor nyitunk egy új file-t a megadott néven és várjuk az adatokat,4.
amiket kiírunk a file-ba.

Kliens nézőpont

) A kliens becsatlakozik és várja a visszajövő fájlok listáját, majd ha megjön akkor kiírjuk a1.
konzolra
) Bekérjük a “u” vagy “d” billentyűt2.
) Majd kérjük a file-nevet is.3.
) a kliens a /files könvytárából olvassa a file-okat, vagy a letöltött file-t is ide hozza létre4.
) “d” billentyű esetén létrehozza a /files/<filename> állományt és a szerverről jövő adatokat5.
beleírja
) “u” billentyű esetén a /files/<filename> állományt elküldi a szervernek6.

Kiinduló minták

1.) Hagyományos blokkolt TCP alapú socket szerver

Socket szerver kód

 import java.io.IOException;
 import java.io.ObjectInputStream;
 import java.io.ObjectOutputStream;
 import java.net.ServerSocket;
 import java.net.Socket;

2026/02/16 09:01 3/7 Alapvető adattovábbítási protokollok

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 public class Server {
 ServerSocket providerSocket;
 Socket connection = null;
 ObjectOutputStream out;
 ObjectInputStream in;
 String message;
 Server() {
 }
 void run() {
 try {
 // 1. szerver socket létrehozása
 providerSocket = new ServerSocket(8080);
 // 2. kapcsolódásra várakozás
 connection = providerSocket.accept();
 // 3. Input és Output streamek megadása
 out = new ObjectOutputStream(connection.getOutputStream());
 in = new ObjectInputStream(connection.getInputStream());
 // 4. socket kommunikáció
 do {
 try {
 message = (String) in.readObject();
 System.out.println("client>" + message);
 if (message.equals("bye")) {
 sendMessage("bye");
 }
 } catch (ClassNotFoundException classnot) {
 System.err.println("Data received in unknown
format");
 }
 } while (!message.equals("bye"));
 } catch (IOException ioException) {
 ioException.printStackTrace();
 } finally {
 // 4: kapcsolat lezárása
 try {
 in.close();
 out.close();
 providerSocket.close();
 } catch (IOException ioException) {
 ioException.printStackTrace();
 }
 }
 }
 void sendMessage(String msg) {
 try {
 out.writeObject(msg);
 out.flush();
 System.out.println("server>" + msg);
 } catch (IOException ioException) {
 ioException.printStackTrace();
 }

Last
update:
2024/03/06
08:33

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709714009

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

 }
 public static void main(String args[]) {
 Server server = new Server();
 while (true) {
 server.run();
 }
 }
 }

Socket kliens kód

 import java.io.IOException;
 import java.io.ObjectInputStream;
 import java.io.ObjectOutputStream;
 import java.net.Socket;
 import java.net.UnknownHostException;
 public class Client {
 Socket requestSocket;
 ObjectOutputStream out;
 ObjectInputStream in;
 String message;
 Client() {
 }
 void run() {
 try {
 // 1. socket kapcsolat létrehozása
 requestSocket = new Socket("localhost", 8080);
 // 2. Input and Output streamek
 out = new
ObjectOutputStream(requestSocket.getOutputStream());
 in = new ObjectInputStream(requestSocket.getInputStream());
 // 3: Kommunikáció
 do {
 try {
 sendMessage("Hello szerver");
 sendMessage("bye");
 message = (String) in.readObject();
 } catch (Exception e) {
 System.err.println("data received in unknown
format");
 }
 } while (!message.equals("bye"));
 } catch (UnknownHostException unknownHost) {
 System.err.println("You are trying to connect to an unknown
host!");
 } catch (IOException ioException) {
 ioException.printStackTrace();

2026/02/16 09:01 5/7 Alapvető adattovábbítási protokollok

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 } finally {
 // 4: Kapcsolat zárása
 try {
 in.close();
 out.close();
 requestSocket.close();
 } catch (IOException ioException) {
 ioException.printStackTrace();
 }
 }
 }
 void sendMessage(String msg) {
 try {
 out.writeObject(msg);
 out.flush();
 System.out.println("client>" + msg);
 } catch (IOException ioException) {
 ioException.printStackTrace();
 }
 }
 public static void main(String args[]) {
 Client client = new Client();
 client.run();
 }
 }

2.) Hagyományos UDP alapú kommunikáció

a) Az alábbi Ágens küld egy üzenetet és a 8080-as porton várja a választ rá, ugyancsak UDP-vel.
Megjegyzés: az Eclipse fejlesztőkörnyezetben a consolon beírt szöveget ctrl+z leütésével lehet
elküldeni.

Feladat: módosítsuk a kódot, hogy át tudjon küldeni egy beégetett nevű, és létező, 2 kbyte-nál
nagyobb szöveges vagy kép állományt és ellenőrizzük a sikeres küldést.

 package org.ait;
 import java.io.BufferedReader;
 import java.io.InputStreamReader;
 import java.net.DatagramPacket;
 import java.net.DatagramSocket;
 import java.net.InetAddress;
 public class Componenet1 {
 public static void main(String args[]) throws Exception {
 BufferedReader inFromUser = new BufferedReader(new
InputStreamReader(System.in));
 DatagramSocket clientSocket = new DatagramSocket();
 InetAddress IPAddress = InetAddress.getByName("localhost");
 byte[] sendData = new byte[1024];

Last
update:
2024/03/06
08:33

tanszek:oktatas:informacios_rendszerek_integralasa:java_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709714009

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:01

 byte[] receiveData = new byte[1024];
 String sentence = inFromUser.readLine();
 sendData = sentence.getBytes();
 DatagramPacket sendPacket = new DatagramPacket(sendData,
sendData.length, IPAddress, 8080);
 clientSocket.send(sendPacket);
 DatagramPacket receivePacket = new DatagramPacket(receiveData,
receiveData.length);
 clientSocket.receive(receivePacket);
 String modifiedSentence = new String(receivePacket.getData());
 System.out.println("átalakítva:" + modifiedSentence);
 clientSocket.close();
 }
 }

b) A másik UDP komponens a 8080-as porton várja az ágens üzeneteit és nagybetűre konvertálva
visszaküldi a Component1 UDP socket-ére.

 package org.ait;
 import java.net.DatagramPacket;
 import java.net.DatagramSocket;
 import java.net.InetAddress;
 public class Component2 {
 public static void main(String args[]) throws Exception {
 DatagramSocket serverSocket = new DatagramSocket(8080);
 byte[] bytesReceived = new byte[1024];
 byte[] bytesSent = new byte[1024];
 DatagramPacket receivePacket = new DatagramPacket(bytesReceived,
bytesReceived.length);
 // itt várakozik ameddig adat jön a 8080-as porton
 serverSocket.receive(receivePacket);
 String szoveg = new String(receivePacket.getData());
 System.out.println("kaptam: " + szoveg);
 InetAddress IPAddress = receivePacket.getAddress();
 int port = receivePacket.getPort();
 String nagybetűsSzöveg = szoveg.toUpperCase();
 bytesSent = nagybetűsSzöveg.getBytes();
 // visszaküldi
 DatagramPacket sendPacket = new DatagramPacket(bytesSent,
bytesSent.length, IPAddress, port);
 serverSocket.send(sendPacket);
 serverSocket.close();
 }
 }

Ha egy nagyméretű adatot szeretnénk elküldeni, egyben nem tudjuk megtenni, mert nem fér bele
egy UDP csomagba. Ilyenkor egy ciklusban fel kell tördelni pl. 1024 byte hosszú darabokra és ezt kell

2026/02/16 09:01 7/7 Alapvető adattovábbítási protokollok

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

átküldeni a szervernek. A szerveren ugyanígy egy ciklusban kell beolvasni a byte-okat és összefűzni
az 1024 byte-os darabokat.

De ekkor még egy problémát meg kell oldani: honnan tudjuk hogy mekkora a tényleges méret?

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709714009

Last update: 2024/03/06 08:33

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:java_socket?rev=1709714009

	Alapvető adattovábbítási protokollok
	TCP (Transmission Control Protocol)
	UDP (User Datagram Protocol)
	QUIC (Quick UDP Internet Connections) (2021-es szabvány)
	Gyakorló feladat
	Kiinduló minták
	1.) Hagyományos blokkolt TCP alapú socket szerver
	Socket szerver kód
	Socket kliens kód

	2.) Hagyományos UDP alapú kommunikáció

