2026/02/03 19:46 1/5 Protocol Buffers

Protocol Buffers

A Protocol Buffers (Protobuf) a Google altal fejlesztett mddszer a strukturalt adatok
szerializacidjara (binaris formaba alakitdsara). Kilondsen elényds azokban az alkalmazdasokban,
amelyek szerverekkel kommunikalnak vagy adatokat tarolnak, ahol az adatatvitel sebessége és
hatékonysaga kritikus. A Protobuf Ugy lett tervezve, hogy egyszerlibb és hatékonyabb legyen az XML-
nél és JSON-nal, kisebb lizenetméreteket és gyorsabb feldolgozast kinal.

A Protobuf a strukturdlt adatokat egy standard formatumban: .proto fajlban adja meg, amelyet
aztan felhasznalnak forraskdd generalasara a kivalasztott programozasi nyelven. Ezt a forraskddot
hasznaljak a strukturalt adatok irdsara és olvasasara kilonb6z6 adatfolyamokbol.

A Protobuf jellemzoi

» Hatékonysag: A Protobuf hatékonyabb az XML és JSON alapu adattovabbitasnal, mind a
sebesség, mind az adatok méretének tekintetében.

e Tobbnyelvi tamogatas: A Protobuf tamogatja a kddgeneralast kiilénb6z6 programozasi
nyelveken, lehetévé téve az adatcsere egyszerUsitését.

 Visszafelé kompatibilitas: A Protobuf (gy van kialakitva, hogy kompatibilis maradjon az
adatstruktura valtozasai esetén is, lehetévé téve a régi kdd szamara az Uj adatformatumok
olvasasat és forditva.

A Protobuf egy adatintegraciés projektben valé implementaldsahoz tipikusan:

« Definialni kell az adatszerkezeteket egy .proto fajlban.

 Protobuf forditd (protoc) az adathozzaférési osztalyokat legeneralja a .proto fajlok alapjan.

* A fejlesztd kdnnyen hasznalni tudja ezeket a generalt osztalyokat a szolgaltatasok kozotti
kommunikaciéhoz.

Tovabbi részletek itt olvashatok:

https://developers.google.com/protocol-buffers/docs/tutorials

Python mintafeladat

1.) Telepitsiik fel a hivatalos oldalrél a forditét. https://github.com/protocolbuffers/protobuf/releases -
windows esetén keressiik meg a protoc-XXXXXX-win64.zip allomanyt és csomagoljuk ki.

2.) Hozzunk létre egy konyvtarat ./proto néven és a book.proto allomanyt a kdvetkezd tartalommal:

syntax = "proto3";

message Book {
int32 id = 1;
string title = 2;
string author = 3;

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://developers.google.com/protocol-buffers/docs/tutorials
https://github.com/protocolbuffers/protobuf/releases

Last
update:
2024/03/21
11:20

tanszek:oktatas:informacios_rendszerek_integralasa:protobuf https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:protobuf?rev=1711020055

float price = 4;
}

message Books {
repeated Book books = 1;

}
Két lGzenetet hoztunk Iétre, Book és Books néven. A Books tobb Book-ot tartalmazhat. A sorok végén
az = 1, = 2 a struktira mez0 belsd pozicidjat adja meg, egytdl indul a szamozas.

3.) Futtassuk le a kovetkez6 parancsot:
.\protoc\bin\protoc.exe --python out=.\ book.proto

A futtatas utan létrejon a book pb2.py ami generalt forraskod, és az adat interfészt tartalmazza.
Ennek segitségével lehet kezelni (szerializalni és de-szerializalni) az adatokat.

4.) Futtassuk le a pip install protobuf parancsot.

5.) Hozzuk létre a server.py fajlt a kovetkez6 tartalommal:

import socket
import book pb2
import create books as c

protoc/bin/protoc --python out=./ book.proto
pip3 install --upgrade protobuf

books = c.create books()

book store = book pb2.Books()
for book in books:
book store.books.append(book)

bytes to send = book store.SerializeToString()

#TCP socket server

s = socket.socket(socket.AF INET, socket.SOCK STREAM)
s.bind((socket.gethostname(), 4100))

s.listen(10)

while True:
client socket, address = s.accept()
print(f"server> Connection from {address} has been established!\n")

client socket.send(bytes to send)
print(f"server> Message sent: {bytes to send}\n")

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/03 19:46

2026/02/03 19:46 3/5

Protocol Buffers

msg = client socket.recv(1024)
print(f"client> {msg}\n")
client socket.close()

if msg == b'bye':
break

s.close()

6.) Hozzuk létre a create_books.py allomanyt az alabbi tartalommal:

import book pb2

def create books():
books = []

books.append(book pb2.Book())
books[0].id = 1

books[0].title = "Solaris"
books[0].author = "Stanislaw Lem"
books[0] .price = 7.54

books.append(book pb2.Book())
books[1].id = 2

books[1].title = "Dune"
books[1].author = "Frank Herbert"
books[1].price = 9.87

books.append(book pb2.Book())
books[2].id = 3

books[2].title = "Foundation"
books[2].author = "Isaac Asimov"
books[2].price = 5.07

return books

7.) Hozzuk létre a client.py allomanyt az alabbi tartalommal:

import socket
import book pb2

from google.protobuf.json format import MessageToJson

import json

#TCP socket client

s = socket.socket(socket.AF INET, socket.SOCK STREAM)

s.connect((socket.gethostname(), 4100))

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/21
11:20

tanszek:oktatas:informacios_rendszerek_integralasa:protobuf https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:protobuf?rev=1711020055

msg = s.recv(1024)
print(f"server> {msg}\n")

s.sendall(b'bye")
print(f"client> Message sent: {b'bye'}\n")

s.close()

books = book pb2.Books()
books.ParseFromString(msg)

json obj = MessageToJlson(books)
print(f"client> The server's message in JSON:\n{json obj}")

dict obj = json.loads(json obj)

with open('data.json', 'w', encoding='utf-8') as f:
json.dump(dict obj, f, ensure ascii=False, indent=4)
print("client> data.json saved\n")

with open('data.bytes', 'wb') as fb:
fb.write(msg)
print("client> data.bytes saved\n")

8.) Futtassuk le a szervert és klienst. python server.py majd a python client.py parancsokat és
nézzik meg és elemezzik mi torténik?

9.) irjuk meg méas nyelven a klienst!

Egy lehetséges megoldas az aldbbi java-ban. Generaljuk le a protoc segitségével a java helper
osztalyt. A Maven repository-bol toltsiik le a protobuf.jar-t
(https://repol.maven.org/maven2/com/google/protobuf/protobuf-java/), figyelve a megfelel6 verziora.

import java.io.IOException;
import java.io.ObjectOutputStream;
import java.net.Socket;

public class Client {
Socket requestSocket;
ObjectOutputStream out;

Client() {
}

void run() {
try {
requestSocket = new Socket("localhost", 4100);
out = new ObjectOutputStream(requestSocket.getOutputStream());

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/03 19:46

https://repo1.maven.org/maven2/com/google/protobuf/protobuf-java/

2026/02/03 19:46 5/5 Protocol Buffers

BookOuterClass.Books books =
BookOuterClass.Books.parseFrom(requestSocket.getInputStream());
for (BookOuterClass.Book book : books.getBooksList()) {
System.out.println("Book ID: " + book.getId());
System.out.println("Author: " + book.getAuthor());

}

} catch (IOException ioException) {
ioException.printStackTrace();
}
}

public static void main(String args[]) {
Client client = new Client();
client.run();

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:

Last update: 2024/03/21 11:20

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:protobuf?rev=1711020055

	[Protocol Buffers]
	Protocol Buffers
	A Protobuf jellemzői

	Python mintafeladat

