
2026/02/03 19:46 1/5 Protocol Buffers

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Protocol Buffers

A Protocol Buffers (Protobuf) a Google által fejlesztett módszer a strukturált adatok
szerializációjára (bináris formába alakítására). Különösen előnyös azokban az alkalmazásokban,
amelyek szerverekkel kommunikálnak vagy adatokat tárolnak, ahol az adatátvitel sebessége és
hatékonysága kritikus. A Protobuf úgy lett tervezve, hogy egyszerűbb és hatékonyabb legyen az XML-
nél és JSON-nál, kisebb üzenetméreteket és gyorsabb feldolgozást kínál.

A Protobuf a strukturált adatokat egy standard formátumban: .proto fájlban adja meg, amelyet
aztán felhasználnak forráskód generálására a kiválasztott programozási nyelven. Ezt a forráskódot
használják a strukturált adatok írására és olvasására különböző adatfolyamokból.

A Protobuf jellemzői

Hatékonyság: A Protobuf hatékonyabb az XML és JSON alapú adattovábbításnál, mind a
sebesség, mind az adatok méretének tekintetében.
Többnyelvű támogatás: A Protobuf támogatja a kódgenerálást különböző programozási
nyelveken, lehetővé téve az adatcsere egyszerűsítését.
Visszafelé kompatibilitás: A Protobuf úgy van kialakítva, hogy kompatibilis maradjon az
adatstruktúra változásai esetén is, lehetővé téve a régi kód számára az új adatformátumok
olvasását és fordítva.

A Protobuf egy adatintegrációs projektben való implementálásához tipikusan:

Definiálni kell az adatszerkezeteket egy .proto fájlban.
Protobuf fordító (protoc) az adathozzáférési osztályokat legenerálja a .proto fájlok alapján.
A fejlesztő könnyen használni tudja ezeket a generált osztályokat a szolgáltatások közötti
kommunikációhoz.

További részletek itt olvashatók:

https://developers.google.com/protocol-buffers/docs/tutorials

Python mintafeladat

1.) Telepítsük fel a hivatalos oldalról a fordítót. https://github.com/protocolbuffers/protobuf/releases -
windows esetén keressük meg a protoc-XXXXXX-win64.zip állományt és csomagoljuk ki.

2.) Hozzunk létre egy könyvtárat ./proto néven és a book.proto állományt a következő tartalommal:

syntax = "proto3";

message Book {
    int32 id = 1;
    string title = 2;
    string author = 3;

https://developers.google.com/protocol-buffers/docs/tutorials
https://github.com/protocolbuffers/protobuf/releases


Last
update:
2024/03/21
11:20

tanszek:oktatas:informacios_rendszerek_integralasa:protobuf https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:protobuf?rev=1711020055

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/03 19:46

    float price = 4;
}

message Books {
    repeated Book books = 1;
}

Két üzenetet hoztunk létre, Book és Books néven. A Books több Book-ot tartalmazhat. A sorok végén
az = 1, = 2 a struktúra mező belső pozícióját adja meg, egytől indul a számozás.

3.) Futtassuk le a következő parancsot:

.\protoc\bin\protoc.exe --python_out=.\ book.proto

A futtatás után létrejön a book_pb2.py ami generált forráskód, és az adat interfészt tartalmazza.
Ennek segítségével lehet kezelni (szerializálni és de-szerializálni) az adatokat.

4.) Futtassuk le a pip install protobuf parancsot.

5.) Hozzuk létre a server.py fájlt a következő tartalommal:

import socket
import book_pb2
import create_books as c

# protoc/bin/protoc --python_out=./ book.proto
# pip3 install --upgrade protobuf

books = c.create_books()

book_store = book_pb2.Books()
for book in books:
    book_store.books.append(book)

bytes_to_send = book_store.SerializeToString()

#TCP socket server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((socket.gethostname(), 4100))
s.listen(10)

while True:
    client_socket, address = s.accept()
    print(f"server> Connection from {address} has been established!\n")

    client_socket.send(bytes_to_send)
    print(f"server> Message sent: {bytes_to_send}\n")



2026/02/03 19:46 3/5 Protocol Buffers

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

    msg = client_socket.recv(1024)
    print(f"client> {msg}\n")
    client_socket.close()

    if msg == b'bye':
        break

s.close()

6.) Hozzuk létre a create_books.py állományt az alábbi tartalommal:

import book_pb2

def create_books():
    books = []

    books.append(book_pb2.Book())
    books[0].id = 1
    books[0].title = "Solaris"
    books[0].author = "Stanislaw Lem"
    books[0].price = 7.54

    books.append(book_pb2.Book())
    books[1].id = 2
    books[1].title = "Dune"
    books[1].author = "Frank Herbert"
    books[1].price = 9.87

    books.append(book_pb2.Book())
    books[2].id = 3
    books[2].title = "Foundation"
    books[2].author = "Isaac Asimov"
    books[2].price = 5.07

    return books

7.) Hozzuk létre a client.py állományt az alábbi tartalommal:

import socket
import book_pb2
from google.protobuf.json_format import MessageToJson
import json

#TCP socket client
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((socket.gethostname(), 4100))



Last
update:
2024/03/21
11:20

tanszek:oktatas:informacios_rendszerek_integralasa:protobuf https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:protobuf?rev=1711020055

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/03 19:46

msg = s.recv(1024)
print(f"server> {msg}\n")

s.sendall(b'bye')
print(f"client> Message sent: {b'bye'}\n")

s.close()

books = book_pb2.Books()
books.ParseFromString(msg)

json_obj = MessageToJson(books)
print(f"client> The server's message in JSON:\n{json_obj}")

dict_obj = json.loads(json_obj)

with open('data.json', 'w', encoding='utf-8') as f:
    json.dump(dict_obj, f, ensure_ascii=False, indent=4)
    print("client> data.json saved\n")

with open('data.bytes', 'wb') as fb:
    fb.write(msg)
    print("client> data.bytes saved\n")

8.) Futtassuk le a szervert és klienst. python server.py majd a python client.py parancsokat és
nézzük meg és elemezzük mi történik?

9.) Írjuk meg más nyelven a klienst!

Egy lehetséges megoldás az alábbi java-ban. Generáljuk le a protoc segítségével a java helper
osztályt. A Maven repository-ból töltsük le a protobuf.jar-t
(https://repo1.maven.org/maven2/com/google/protobuf/protobuf-java/), figyelve a megfelelő verzióra.

import java.io.IOException;
import java.io.ObjectOutputStream;
import java.net.Socket;

public class Client {
    Socket requestSocket;
    ObjectOutputStream out;

    Client() {
    }

    void run() {
        try {
            requestSocket = new Socket("localhost", 4100);
            out = new ObjectOutputStream(requestSocket.getOutputStream());

https://repo1.maven.org/maven2/com/google/protobuf/protobuf-java/


2026/02/03 19:46 5/5 Protocol Buffers

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

            BookOuterClass.Books books =
BookOuterClass.Books.parseFrom(requestSocket.getInputStream());
            for (BookOuterClass.Book book : books.getBooksList()) {
                System.out.println("Book ID: " + book.getId());
                System.out.println("Author: " + book.getAuthor());
            }

        } catch (IOException ioException) {
            ioException.printStackTrace();
        }
    }

    public static void main(String args[]) {
        Client client = new Client();
        client.run();
    }
}

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:protobuf?rev=1711020055

Last update: 2024/03/21 11:20

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:protobuf?rev=1711020055

	[Protocol Buffers]
	Protocol Buffers
	A Protobuf jellemzői

	Python mintafeladat


