
2026/02/16 09:07 1/4 Összetettebb példa

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Összetettebb példa

Egy minőségbiztosító rendszer mérőgépének 3 állapotát küldjük egy 'qualityQueue' nevű üzenetsorra.
Készítsen egy több komponensből álló alkalmazást, amely 2 kliensen keresztül kommunikál az
üzenetsorral az alábbi módon:

Az első kliens, ami a mérőgépre helyezett érzékelőre kapcsolódik a 'qualityQueue' üzenetsorra
pont-pont csatlakozással véletlenszerűen GOOD, EXCELLENT és WRONG üzeneteket küld
másodpercenként.
Készítsen egy komponenst amely a 'GOOD', 'EXCELLENT' és a 'WRONG' üzeneteket
leolvassa a qualityQueue sorról és gyűjti. Minden 10 megkapott azonos üzenet után a
'qualityStatistics' sorra küld egy üzenetet, amiben azt jelzi, hogy 10 (adott minőségű) üzenetet
feldolgozott.
Készítsen egy második klienst, ami a 'qualityStatistics' sorrol olvassa a statisztikát és a
konzolba kiírja hogy pl. '10 'WRONG' messages has been processed'

flowchart TB MQ[("RabbitMQ Server\n(qualityQueue, qualityStatistics)")] Client1["Component
1\n(Sensor Data Sender)"] -->|sends GOOD/EXCELLENT/WRONG| MQ Client2["Component 2\n(Quality
Message Consumer)"] -- collects messages --> MQ Client2 -->|sends batch of 10 messages| MQ
Client3["Component 3\n(Statistics Consumer)"] -- receives and prints batches --> MQ subgraph
Docker MQ end subgraph Client Terminals Client1 Client2 Client3 end classDef machine
fill:#f9f,stroke:#333,stroke-width:2px; classDef clients fill:#ccf,stroke:#333,stroke-width:2px; class
Docker machine; class Client1,Client2,Client3 clients;

A fenti feladatot a http://docker.iit.uni-miskolc.hu keretrendszerben oldjuk meg.

RabbitMQ indítása docker-ben

A feladat megoldásához több instance-t (konzolt) érdemes indítani. Az első konzol fogja a rabbitMQ
szervert indítani. Adjunk hozzá egy konzolt (node 1) és futtassuk a következő parancsot:

docker run -it --rm --name rabbitmq -p 5672:5672 -p 15672:15672
rabbitmq:management-alpine

A futtatás után a rabitMQ management konzol elérhető az 15672-es porton, a guest/guest
megadásával. A bal oldali listában láthatjuk a node1 10.x.y.z belső IP címét, amit használhatunk a
kliensekben és a feldolgozóban.

Hozzunk létre egy másik konzolt és indítsuk el az alábbi parancsot:

pip install pika

Ezzel telepítettük a pika modult, ami a rabbitMQ-hoz való csatlakozást biztosítja.

Hozzuk létre a quality_message_sender.py-t:

Használjuk a megfelelő IP-t a init(self): ben

import pika

http://docker.iit.uni-miskolc.hu

Last
update:
2024/04/24
06:22

tanszek:oktatas:informacios_rendszerek_integralasa:uezenetsorok-rabbitmq_2 https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:uezenetsorok-rabbitmq_2?rev=1713939747

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:07

import random
import time

class QualitySender:
 def __init__(self):
 self.connection =
pika.BlockingConnection(pika.ConnectionParameters('10.x.y.z'))
 self.channel = self.connection.channel()
 self.channel.queue_declare(queue='qualityQueue')

 def start_sending(self):
 qualities = ['GOOD', 'EXCELLENT', 'WRONG']
 while True:
 quality = random.choice(qualities)
 self.channel.basic_publish(exchange='',
routing_key='qualityQueue', body=quality)
 print(f'Sent quality: {quality}')
 time.sleep(1)

 def close_connection(self):
 self.connection.close()

if __name__ == '__main__':
 sender = QualitySender()
 try:
 sender.start_sending()
 except KeyboardInterrupt:
 sender.close_connection()

A második komponenshez indítsunk egy új konzolt:

A init(self): konstruktorban állítsuk be a rabbitMQ szerver IP címét

import pika

class QualityConsumer:
 def __init__(self):
 self.connection =
pika.BlockingConnection(pika.ConnectionParameters('localhost'))
 self.channel = self.connection.channel()
 self.channel.queue_declare(queue='qualityQueue')
 self.channel.queue_declare(queue='qualityStatistics')
 self.message_count = {'GOOD': 0, 'EXCELLENT': 0, 'WRONG': 0}

 def start_consuming(self):
 def callback(ch, method, properties, body):
 quality = body.decode()
 self.message_count[quality] += 1
 print(f'Received quality: {quality}')
 if self.is_batch_completed():

2026/02/16 09:07 3/4 Összetettebb példa

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 self.send_statistics()
 self.reset_message_count()

 self.channel.basic_consume(queue='qualityQueue',
on_message_callback=callback, auto_ack=True)
 self.channel.start_consuming()

 def send_statistics(self):
 for quality, count in self.message_count.items():
 if count > 0:
 message = f'{count} {quality} messages has been processed'
 self.channel.basic_publish(exchange='',
routing_key='qualityStatistics', body=message)
 print(f'Sent statistics: {message}')

 def reset_message_count(self):
 for quality in self.message_count:
 self.message_count[quality] = 0

 def is_batch_completed(self):
 return sum(self.message_count.values()) >= 10

 def close_connection(self):
 self.connection.close()

if __name__ == '__main__':
 consumer = QualityConsumer()
 try:
 consumer.start_consuming()
 except KeyboardInterrupt:
 consumer.close_connection()

Készítsük el a statisztika kiírását egy új konzolban:

import pika

RabbitMQ settings
connection = pika.BlockingConnection(pika.ConnectionParameters('10.x.y.z'))
channel = connection.channel()

channel.queue_declare(queue='qualityStatistics')

def callback(ch, method, properties, body):
 message = body.decode()
 print(f'{message}')
 ch.basic_ack(delivery_tag=method.delivery_tag)

channel.basic_consume(queue='qualityStatistics',
on_message_callback=callback)

print('Waiting for quality statistics...')

Last
update:
2024/04/24
06:22

tanszek:oktatas:informacios_rendszerek_integralasa:uezenetsorok-rabbitmq_2 https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:uezenetsorok-rabbitmq_2?rev=1713939747

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:07

channel.start_consuming()

Feladat:

A 15672-es porton lépjük be a rabbitMQ management console-ra és vizsgáljuk meg a lehetőségeit.

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:uezenetsorok-rabbitmq_2?rev=1713939747

Last update: 2024/04/24 06:22

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:uezenetsorok-rabbitmq_2?rev=1713939747

	[Összetettebb példa]
	[Összetettebb példa]
	Összetettebb példa
	RabbitMQ indítása docker-ben

