2026/02/16 12:08 1/6 Konténer alapu virtualizacié Docker segitségével

V4 n /7

Konténer alapu virtualizacio Docker
segitségével

Cloud Computing

A felhé alapl szamitastechnika (Cloud Computing) Iétrejotte és rohamos fejlédése forradalmasitotta
az informatikai szolgaltatasok Gzemeltetését. A Cloud Computing a 2010-es évektdl kiemelkedd
terlilete a szamitastechnikanak. Fontos el6nye a szamitasi kapacitas igény szerinti elérhetésége,
valamint a felh@szolgaltaté altal biztositott adattarolasi lehetéségek és szamitasi teljesitmény
igénybevétele a hardverek kdzvetlen, felhasznald altali karbantartasa nélkul. Infrastrukturalis szinten
a felhdszolgaltatdk virtudlis gépeket bocsatanak rendelkezésre, és tdmogatjak ezek késdbbi,
dinamikus skalazasat (pl. memdria és tarhely mennyiségének novelése).

A felhé alapl szamitastechnika lehet6vé teszi a vallalatok szamara, hogy minimalizaljak az IT-
infrastruktura felépitésének kezdeti koltségeit, valamint alkalmazasaikat gyorsabban lizembe
helyezzék, jobb kezelhetdség és kevesebb karbantartas mellett.

Lehet6vé teszi tovabba, hogy a szolgaltatok gyorsan adaptaljak sajat er6forrasaikat az ingadozd, vagy
csak idészakosan kiugro igényekhez (pl. Black Friday egy webshopnal, sorozat premier egy streaming
szolgéltaténal). Ezt ,cloud bursting”-nek is nevezziik.

Konténerek

A nativ felh6 alapu szamitastechnika (Cloud Native Computing) egy olyan modern szoftverfejlesztési
megkozelités, amely a felh6t hasznalja fel jol skalazhatd alkalmazasok létrehozasara és futtatasara,
dinamikus (zemeltetési kornyezetekben. Ennek a megkozelitésnek gyakori elemei az olyan
technoldgiak, mint a konténerek, mikroszolgaltatasok, ,serverless” fliggvények és a deklarativ kédon
keresztll telepitett infrastruktira (Infrastructure as Code).

A nativ felhd alapu alkalmazasok gyakran Docker-tarolokban futd konténerek altal nyujtott
mikroszolgdltatasokbdl épiilnek fel, amelyeket Kubernetes-ben irdnyitanak, és CI/CD, valamint
DevOps munkafolyamatok segitségével telepitenek és lizemeltetnek.

A konténerizacid (containerization) jelentds hatast gyakorol a nativ felhd alapu szamitastechnikara,
mert 6nallé telepitési egységek szabvanyositott formaban térténd Iétrehozasanak lehetéségét
biztositja, tovabba energia-, koltség-, eréforras- és tarhely-hatékony, emellett a hagyomanyos
virtualis gépekétdl jelentdsen gyorsabb rendszerinditast tesz lehetévé. Ezen tulajdonsagai
megkonnyitik a terheléselosztast, a rendszerkarbantartast, valamint a konténerek foldrajzi régiok
kozotti replikaciojat a jobb hibatlirés és az alkalmazasok megbizhatdésaganak ndvelése érdekében.

A konténer technoldgia, mint OS-szintU virtualizacio jelen van, és egyre inkabb teret nyer a modern
szoftverek lzemeltetésében. A szamitasi felhd platformok kovetkez6 generacidja nem a hardverek,
hanem az alkalmazasok virtualizaciéjan alapul.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2025/03/26
13:13

tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto?rev=1742994795

Virtual machine

::

Container

Bins/1ibs § Bins/libs

Guest 0S Guest 05

Bins/libs § Bins/libs

Hypervisor * Container Engine
docker

Host 0S Host 0S5
Infrastructure @ Infrastructure
Type 2 Hypervisor Containerization

A klasszikus virtudlis gépek altaldban ugy mikddnek, hogy egy hypervisor felligyel tébb virtudlis
gépet (VM), melyek egyenként kiilon operacids rendszert futtatnak. A konténerek esetében minden
alkalmazas ugyanazon az operacids rendszeren fut, viszont konténerenként kilon-kilon, elszeparalt
kornyezetekben. A konténerek kdzott tehat processz szintd izolacié valdsul meg, melyet a hoszt gép
kernele biztosit.

Mivel egy-egy alkalmazas elinditasakor nem kell a kernel elindulasara varni, a rendszerinditasi
folyamat sokkal gyorsabb, mint a hagyomanyos VM-ek esetében. Emellett az eréforras kihasznalas
jelentésen jobb (kozel nativ teljesitmény elérésére van lehetdség), mint a virtualis gépeknél.

A konténer technoldgia tovabbi elénye, hogy az alkalmazaskornyezetet kisméretl 6nallé telepitési
egységekbe, ,képfajlokba” szervezik. Ezek a képfajlok kis méretiikbdl adéddan eldallhatnak akar
automatizaltan, egy CI/CD folyamat eredményeképpen is. Az elkészilt képfajl modositasok nélkal
azonnal futtathaté megfelel6 konténer motor segitségével.

Ennek jelentdsége van a szoftverfejlesztés soran is, a Docker Hub-on kézel 1 millié konténer-képfajl
talalhatd, melyek egy jelentds része a fejlesztéshez is hasznalt, sokszor komplex médon
Uzemeltethetd eszkdzoket (pl. adatbazisokat, gyorsitotarakat, webszervereket) tartalmaz, melyek igy
egyszerlien, bonyolultabb telepitési Iépések nélkil indithatdk és tavolithatok el a fejlesztdé gépérdl.

A konténerek emellett kisebb tar- és memdriaigénnyel rendelkeznek, mint a VM-ek, emiatt
kdnnyebben lehet éket alkalmazni multi-cloud kérnyezetben, ahol a szolgaltatads egyszerre tébb
felh6ben (pl. céges privatfelhd, Google Cloud Platform, Microsoft Azure, Amazon Web Services) van
Uzemeltetve. Jol alkalmazhatdk tovabba cloud bursting soran, amikor a megnévekvd igények miatt a
sajat infrastruktldra mellett igénybe kell venni egy publikus felhdszolgaltatast is az izemeltetett

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:08

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:pasted:20250326-125311.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Adocker_ismerteto

2026/02/16 12:08 3/6 Konténer alapu virtualizacié Docker segitségével

alkalmazas szamara.

A konténerek szamos elénnyel rendelkeznek, de architektirajukbdl adédoan sebezhetébb
megoldasnak szamitanak, mint a klasszikus virtualis gépek, ugyanis minden konténer egyetlen
kernelen fut, és csupan ennek a kernelnek a hibaibél adédéan (Single Point of Failure) eléfordulhat
nem kivant adatszivargas a konténerek kozott.

Docker

Napjainkban a Docker platform de-facto standardnak szamit a konténerizacié gyakorlati
megvaldsitasaban. Segitségével az alkalmazasokat egyszertien csomagolhatjuk konténerekbe, majd
telepithetjik Oket szinte barmilyen szamitogépre vagy szerverre.

Architektura

async function main() { FROM base_image

try {
await mysgl.createConnection(i WORKDIR /usr/a
host, port, user, password =~ Context Dockerfile |---- copy >
b RUN npm run build
T

l' docker build

Image

docker run

Y

docker start i

! RUNNING STOPPED
i CONTAINER ¢ docker stop CONTAINER

A Docker architekturalis felépitését, valamint legfontosabb parancsait a fenti abra mutatja be.
A Docker platform épitéelemei a kdvetkezok:

« Image (képfajl): Allapotmentes, futtathaté egység, amely tartalmazza az alkalmazést és annak
0sszes szlUkséges fliggéségét, konfiguracidjat, akar forraskddjat. A képfajl tulajdonképpen az
alkalmazas-kdérnyezet statikus kezddallapota. Docker képfajlok kontextus és Dockerfile alapjan
épithetdek.

o Kontextus: Alkalmazasunk forraskddja és fliggéségei. Minden olyan f4jl, informacid, és
egyéb eréforras, melyre sziikség van a szoftveriink mikodéséhez.
o Dockerfile: A Docker-képfajl [étrehozasahoz sziikséges parancsokat tartalmazo fajl.

e Container (konténer): A Docker-képfajl egy éppen futd példanya. Minden konténer rendelkezik

képfajllal. Egy képfajl tobb példanyban (azaz tébb konténerként) is elindithato.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:pasted:20250326-125339.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Adocker_ismerteto

Last

;ggg;gé/% tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto?rev=1742994795

13:13

» Registry (tarold): El6re elkészitett Docker-képfajlokat tarold szerver. Lehet publikus (pl. Docker
Hub) vagy privat (pl. céges) elérésu. A registry-be feltélthetok (push), illetve onnan letdlthetdk
(pull) a képfajlok.

Konténerek és képfajlok

A Docker konténerek alapjaul szolgald képfajl a kontextus és egy Dockerfile segitségével allithatd el6.

A képfajl a konténer statikus vaza, egy recept arra vonatkozdan, hogy hogyan tudjuk a konténert
|étrehozni és elinditani.

Context + Dockerfile
Image
Container #1 Container #2 Container #3 Container #4

Egy képfajlbdl tobb konténer is l1étrehozhatd, példaul abban az esetben lehet erre sziikség, ha
alkalmazasunk valaszidejét csokkenteni szeretnénk, példaul az alabbi médok valamelyikén:

e Adott szerverkdzpontban tobb konténerben inditjuk el ugyanazt az alkalmazast, a kliensek
kéréseit egy load balancer mindig a legkevésbé leterhelt konténerhez iranyitja.

e Ugyanazt az alkalmazast tobb szerverkdzpontban inditjuk el (pl. egyet Eurépaban, egyet az
USA-ban), majd a kliensek kéréseit egy load balancer mindig a geografiailag legkdzelebbi
konténerhez irdnyitja.

Perzisztens tarolok

A konténereket alapvetden ,allapotmentes” mikddésre tervezték, ez azt is jelenti, hogy barmikor
eldobhaténak és egy kezdeti, tiszta allapotbdl Ujraindithaténak kell lenniiik, anélkil, hogy ez a
rendszer egészére komoly hatast gyakorolna. Nem célszer(tehat, ha olyan allapotot tartalmaznak,
amit fontos lenne hosszabb ideig megdrizni.

A fentiek alapjan érezhetjlk, hogy ez a fajta allapotmentesség egyes alkalmazasok, pl. adatbazisok
esetében nem allja meg a helyét, hiszen ezek célja éppen az, hogy a tarolt adatokat hosszabb tavon,
perzisztens mddon megdrzddjenek és sziikség esetén hozzaférhetéek legyenek.

Ennek a problémanak a megoldasa miatt van lehetéséglink Un. perzisztens tarolok (volume-ok)
|étrehozasara. A perzisztens tarolok nem a konténer virtualizalt - és kivilrdl kozvetlenll elérhetetlen -
fajlrendszerén, hanem kozvetlenil a hoszt gépen kerlilnek tarolasra, ahogy az az alabbi abran is

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:08

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:pasted:20250326-130055.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Adocker_ismerteto

2026/02/16 12:08 5/6

Konténer alapu virtualizacié Docker segitségével

l[athato.

Host machine)

Container #1 Container #1 Container #2 Container #2

filesystem filesystem
_______ R e
| Host filesystem , :
|_ ______
| I
| Persistent |
| volume |
I

|

System Administrator

Perzisztens taroldkat neviik és opcionalisan egyes jellemzdik (pl. méretiik) megadasaval hozhatunk

|étre. A tarold nevének egyedinek kell lennie.

A konténer elinditasakor meghatarozhatjuk, hogy a konténer fajlrendszerének mely konyvtarat

rendeljiik hozza a taroléhoz. igy ezek a fajlok nem a konténer, hanem a hoszt gép fajlrendszerében
lesznek tarolva, innen lesznek elérheték és mddosithatok. Ebben az esetben a tarolt fajlokhoz nem
csak a konténerek, hanem a hoszt gép felhasznaldi is hozzaférhetnek. Ez egyebek mellett elényds

lehet példaul biztonsagi mentések készitésekor is.

Ezt a folyamatot a Docker Engine kezeli, a konténer szamara teljesen transzparens médon.

Virtualis halozat

Az alkalmazasok gyakran tobb konténerre oszthatdéak, ezek a konténerek a halézaton keresztdil
képesek kommunikalni egymassal. A Docker tobbféle virtualizalt haldézatkezelési modszert tdmogat,
melyek kozil leggyakrabban bridge network-6ket hasznalnak.

@ some-application

@' todo-backend

@ todo-database

Bridge network A

Bridge network B

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:pasted:20250326-130313.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Adocker_ismerteto
https://docs.docker.com/engine/network/drivers/bridge/
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:pasted:20250326-130711.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Adocker_ismerteto

Last
update:
2025/03/26
13:13

tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto?rev=1742994795

Ahogy az a képen is lathato, az azonos haldzathoz hozzakapcsolt konténerek (todo-backend, todo-
database) egymassal kommunikalni tudnak, azonban a kilonb6z6 halézaton 1évé konténerek (pl. a
some-application és a todo-backend) nem érhetik el egymast. Egy konténer egyébként akar
tébb halézathoz is kapcsolddhat.

Amennyiben az elinditott konténert nem kapcsoljuk halézathoz, az alapértelmezett bridge hal6zathoz
fog tartozni. Fontos megjegyezni, hogy ezen az alapértelmezett hadlézaton a konténerek kizarélag
kdzvetlendl, IP-cim alapjan érhetik el egymast, a DNS szolgaltatas nem biztositott szamukra (a DNS a
névfeloldasért szerepel, pl. az uni-miskolc.hu domainbdl el6allitja a 193.6.10.2 IP-cimet, ezt ki
is lehet prébalni, pl. itt: https://toolbox.googleapps.com/apps/dig/#A/).

A DNS szolgaltatas hianya bonyolult feladatta teszi a konténerek kommunikaciéjanak megvalositasat,
hiszen példaul egy Ujrainditott konténer esetében semmi nem garantalja azt, hogy Ujra a korabbi IP-
cimét kapja meg a héaldézaton.

Amennyiben sajat haldzatot (,user-defined bridge”) hozunk létre, azon belll a névfeloldas
automatikusan biztositott, az egyes konténerekre konkrét IP-cimiik helyett elegendé elnevezésikkel
(pl. todo-database) hivatkoznunk a halézati kommunikacié soran, igy az esetleges IP-cim valtas
sem okoz gondot az alkalmazas lizemeltetésében.

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:)
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto?rev=1742994795 ; F}. e

Last update: 2025/03/26 13:13

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:08

https://toolbox.googleapps.com/apps/dig/#A/
https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto?rev=1742994795

	Konténer alapú virtualizáció Docker segítségével
	Cloud Computing
	Konténerek
	Docker
	Architektúra
	Konténerek és képfájlok
	Perzisztens tárolók
	Virtuális hálózat

