2026/02/16 12:05 1/6 Konténer alapu virtualizacié Docker segitségével

V4 n /7

Konténer alapu virtualizacio Docker
segitségével

Cloud Computing

A felhé alapl szamitastechnika (Cloud Computing) Iétrejotte és rohamos fejlédése forradalmasitotta
az informatikai szolgaltatasok Gzemeltetését. A Cloud Computing a 2010-es évektdl kiemelkedd
terlilete a szamitastechnikanak. Fontos el6nye a szamitasi kapacitas igény szerinti elérhetésége,
valamint a felh@szolgaltaté altal biztositott adattarolasi lehetéségek és szamitasi teljesitmény
igénybevétele a hardverek kdzvetlen, felhasznald altali karbantartasa nélkul. Infrastrukturalis szinten
a felhdszolgaltatdk virtudlis gépeket bocsatanak rendelkezésre, és tdmogatjak ezek késdbbi,
dinamikus skalazasat (pl. memdria és tarhely mennyiségének novelése).

A felhé alapl szamitastechnika lehet6vé teszi a vallalatok szamara, hogy minimalizaljak az IT-
infrastruktura felépitésének kezdeti koltségeit, valamint alkalmazasaikat gyorsabban lizembe
helyezzék, jobb kezelhetdség és kevesebb karbantartas mellett.

Lehet6vé teszi tovabba, hogy a szolgaltatok valamely publikus felhdszolgaltatas felhasznalasaval
gyorsan adaptaljak sajat er6forrasaikat az ingadozd, vagy csak id6szakosan kiugré igényekhez (pl.
Black Friday egy webshopnal, sorozat premier egy streaming szolgaltaténal). Ezt ,cloud bursting”-nek
is nevezzuk.

Konténerek

A nativ felhé alapu szamitastechnika (Cloud Native Computing) egy olyan modern szoftverfejlesztési
megkozelités, amely a felh6t hasznalja fel jol skalazhatd alkalmazasok létrehozasara és futtatasara,
dinamikus (izemeltetési kérnyezetekben. Ennek a megkdzelitésnek gyakori elemei az olyan
technoldgiak, mint a konténerek, mikroszolgaltatasok, ,serverless” fliggvények és a deklarativ kédon
keresztil telepitett infrastruktdra (Infrastructure as Code).

A nativ felh6 alapu alkalmazasok gyakran Docker-tarolékban futé konténerek altal nydjtott
mikroszolgdltatasokbdl épliilnek fel, amelyeket Kubernetes-ben iranyitanak, és CI/CD, valamint
DevOps munkafolyamatok segitségével telepitenek és (izemeltetnek.

A konténerizacid (containerization) jelentds hatast gyakorol a nativ felhd alapu szamitastechnikara,
mert 6nallé telepitési egységek szabvanyositott formaban térténd létrehozasanak lehetdségét
biztositja, tovabba energia-, koltség-, eréforras- és tarhely-hatékony, emellett a hagyomanyos
virtualis gépekétdl jelentdsen gyorsabb rendszerinditast tesz lehetévé. Ezen tulajdonsagai
megkdnnyitik a terheléselosztast, a rendszerkarbantartast, valamint a konténerek foldrajzi régiok
kozotti replikacidjat a jobb hibatlrés és az alkalmazasok megbizhatésaganak novelése érdekében.

A konténer technoldgia, mint OS-szintU virtualizacio jelen van, és egyre inkabb teret nyer a modern
szoftverek lizemeltetésében. A szamitasi felhd platformok kovetkezé generacidja nem a hardverek,
hanem az alkalmazasok virtualizaciéjan alapul.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2025/03/26
13:36

tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto?rev=1742996208

Virtual machine

l: Bins/1ibs J] Bins/1libs

Container
- - - - - = 1

:

Guest 05 Guest 0S Guest 05
Hypervisor * Container Engine
docker
Host 0S Host 0S
Infrastructure G Infrastructure
Type 2 Hypervisor Containerization

A klasszikus, |hypervisor alapu virtualis gépek ugy mikdédnek, hogy a hypervisor tébb virtualis gépet
(VM) felligyel, melyek egyenként kiilén operacids rendszert futtatnak. A konténerek esetében minden
alkalmazas ugyanazon az operacids rendszeren fut, viszont konténerenként kilon-kilon, elszeparalt
kornyezetekben. A konténerek kdzott tehat processz szintd izolacié valdsul meg, melyet a hoszt gép
kernele biztosit.

Mivel egy-egy alkalmazas elinditasakor nem kell a kernel elindulasara varni, a rendszerinditasi
folyamat sokkal gyorsabb, mint a hagyomanyos VM-ek esetében. Emellett az eréforras kihasznalas
jelentésen jobb (kozel nativ teljesitmény elérésére van lehetdség), mint a virtualis gépeknél.

A konténer technoldgia tovabbi elénye, hogy az alkalmazaskornyezetet kisméretl 6nallé telepitési
egységekbe, ,képfajlokba” szervezik. Ezek a képfajlok kis méretiikbdl adéddan eldallhatnak akar
automatizaltan, egy CI/CD folyamat eredményeképpen is. Az elkészilt képfajl modositasok nélkal
azonnal futtathaté megfelel6 konténer motor segitségével.

Ennek jelentdsége van a szoftverfejlesztés soran is, a Docker Hub-on kézel 1 millié konténer-képfajl
talalhatd, melyek egy jelentds része a fejlesztéshez is hasznalt, sokszor komplex médon
Uzemeltethetd eszkdzoket (pl. adatbazisokat, gyorsitotarakat, webszervereket) tartalmaz, melyek igy
egyszerlien, bonyolultabb telepitési Iépések nélkil indithatdk és tavolithatok el a fejlesztdé gépérdl.

A konténerek emellett kisebb tar- és memdriaigénnyel rendelkeznek, mint a VM-ek, emiatt
kdnnyebben lehet éket alkalmazni multi-cloud kérnyezetben, ahol a szolgaltatads egyszerre tébb
felh6ben (pl. céges privatfelhd, Google Cloud Platform, Microsoft Azure, Amazon Web Services) van
Uzemeltetve. Jol alkalmazhatdk tovabba cloud bursting soran, amikor a megnévekvd igények miatt a
sajat infrastruktldra mellett igénybe kell venni egy publikus felhdszolgaltatast is az izemeltetett

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:05

https://en.wikipedia.org/wiki/Hypervisor

2026/02/16 12:05 3/6 Konténer alapu virtualizacié Docker segitségével

alkalmazas szamara.

A konténerek szamos elénnyel rendelkeznek, de architektirajukbdl adédoan sebezhetébb
megoldasnak szamitanak, mint a klasszikus virtualis gépek, ugyanis minden konténer egyetlen
kernelen fut, és csupan ennek a kernelnek a hibaibél adédéan (Single Point of Failure) eléfordulhat
nem kivant adatszivargas a konténerek kozott.

Docker

Napjainkban a Docker platform de-facto standardnak szamit a konténerizacié gyakorlati
megvaldsitasaban. Segitségével az alkalmazasokat egyszertien csomagolhatjuk konténerekbe, majd
telepithetjik Oket szinte barmilyen szamitogépre vagy szerverre.

Architektura

async function main() { FROM base_image

try {
await mysql.createConnection({ .
host, port, user, password |77 Context Dockerfile ~ F---- R
’ : ' ' COPY . .
H RUN npm run build
Y

1' docker build

Image

docker run

i docker start i
! RUNNING | STOPPED | |
: CONTAINER | dockerstor | CONTAINER | |

A Docker architekturalis felépitését, valamint legfontosabb parancsait a fenti abra mutatja be.

A Docker platform épitéelemei a kdvetkezdk:

« Image (képfajl): Allapotmentes, futtathaté egység, amely tartalmazza az alkalmazast és annak
0sszes szlkséges fliggéségét, konfiguracidjat, akar forraskddjat. A képfajl tulajdonképpen az
alkalmazas-kdrnyezet statikus kezddallapota. Docker képfajlok kontextus és Dockerfile alapjan
épithetdek.

o Kontextus: Alkalmazasunk forraskddja és fliggéségei. Minden olyan fjl, informacio, és
egyéb erdforrds, melyre szlikség van a szoftveriink mikddéséhez.
o Dockerfile: A Docker-képfajl Iétrehozasahoz sziikséges parancsokat tartalmazé fajl.
e Container (konténer): A Docker-képfajl egy éppen futdé példanya. Minden konténer rendelkezik

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2025/03/26
13:36

tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto?rev=1742996208

képfajllal. Egy képfajl tobb példanyban (azaz tobb konténerként) is elindithatd.

» Registry (tarold): El6re elkészitett Docker-képfajlokat tarold szerver. Lehet publikus (pl. Docker
Hub) vagy privat (pl. céges) elérés(. A registry-be feltdltheték (push), illetve onnan letdlthet6k
(pull) a képfajlok.

Konténerek és képfajlok

A Docker konténerek alapjaul szolgald képfajl a kontextus és egy Dockerfile segitségével allithaté el6.

A képfajl a konténer statikus vaza, egy recept arra vonatkozdan, hogy hogyan tudjuk a konténert
|étrehozni és elinditani.

Context + Dockerfile
Image
Container #1 Container #2 Container #3 Container #4

Egy képfajlbdl tobb konténer is Iétrehozhatd, példaul abban az esetben lehet erre szlkség, ha
alkalmazasunk valaszidejét csokkenteni szeretnénk, példaul az alabbi mddok valamelyikén:

e Adott szerverkdzpontban tébb konténerben inditjuk el ugyanazt az alkalmazast, a kliensek
kéréseit egy load balancer mindig a legkevésbé leterhelt konténerhez iranyitja.

e Ugyanazt az alkalmazast tobb szerverkdzpontban inditjuk el (pl. egyet Eurépaban, egyet az
USA-ban), majd a kliensek kéréseit egy load balancer mindig a geografiailag legkozelebbi
konténerhez iranyitja.

Perzisztens tarolok

A konténereket alapvetden ,allapotmentes” mlkodésre tervezték, ez azt is jelenti, hogy barmikor
eldobhatdénak és egy kezdeti, tiszta allapotbdl Gjraindithatonak kell lennitik, anélkil, hogy ez a
rendszer egészére komoly hatdst gyakorolna. Nem célszer(tehat, ha olyan allapotot tartalmaznak,
amit fontos lenne hosszabb ideig megdrizni.

A fentiek alapjan érezhetjik, hogy ez a fajta allapotmentesség egyes alkalmazasok, pl. adatbazisok
esetében nem allja meg a helyét, hiszen ezek célja éppen az, hogy a tarolt adatokat hosszabb tdvon,
perzisztens mdédon megdrzddjenek és sziikség esetén hozzaférhetéek legyenek.

Ennek a problémanak a megoldasa miatt van lehetéséglnk Un. perzisztens taroldk (volume-ok)

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:05

2026/02/16 12:05 5/6 Konténer alapu virtualizacié Docker segitségével

|étrehozasara. A perzisztens taroldk nem a konténer virtualizalt - és kivulrdl kozvetlenll elérhetetlen -
fajlrendszerén, hanem kozvetlendiil a hoszt gépen keriilnek tarolasra, ahogy az az alabbi dbran is
lathato.

Host machine)

Container #1 Container #1 Container #2 Container #2
filesystem filesystem

|

| Persistent
| volume
|

System Administrator

Perzisztens taroldkat neviik és opcionalisan egyes jellemzdik (pl. méretiik) megadasaval hozhatunk
|étre. A tarold nevének egyedinek kell lennie.

A konténer elinditasakor meghatarozhatjuk, hogy a konténer fajlrendszerének mely konyvtarat
rendeljiik hozza a taroléhoz. igy ezek a fajlok nem a konténer, hanem a hoszt gép fajlrendszerében
lesznek tarolva, innen lesznek elérheték és mddosithatok. Ebben az esetben a tarolt fajlokhoz nem
csak a konténerek, hanem a hoszt gép felhasznaldi is hozzaférhetnek. Ez egyebek mellett elényds
lehet példaul biztonsagi mentések készitésekor is.

Ezt a folyamatot a Docker Engine kezeli, a konténer szamara teljesen transzparens médon.

Halozat virtualizacio

Az alkalmazasok gyakran tobb konténerre oszthatdak, ezek a konténerek a halézaton keresztdl
képesek kommunikalni egymassal. A Docker tobbféle virtualizalt haldézatkezelési modszert tdmogat,
melyek kozil leggyakrabban bridge network-6ket hasznalnak.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://docs.docker.com/engine/network/drivers/bridge/

Last
update:
2025/03/26

13:36
@7 some-application

tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto?rev=1742996208

@7 todo-backend @7 todo-database

Bridge network A Bridge network B

Ahogy az a képen is lathatd, az azonos halézathoz hozzakapcsolt konténerek (todo-backend, todo-
database) egymassal kommunikalni tudnak, azonban a kiilonb6z6 halézaton 1évé konténerek (pl. a
some-application és a todo-backend) nem érhetik el egymast. Egy konténer egyébként akar
tobb haldzathoz is kapcsolédhat.

Amennyiben az elinditott konténert nem kapcsoljuk haldzathoz, az alapértelmezett bridge halézathoz
fog tartozni. Fontos megjegyezni, hogy ezen az alapértelmezett haldézaton a konténerek kizarélag
kdzvetlenll, IP-cim alapjan érhetik el egymast, a DNS szolgaltatds nem biztositott szamukra (a DNS a

névfeloldasért szerepel, pl. az uni-miskolc.hu domainbdl elédllitja a 193.6.10.2 IP-cimet, ezt ki
is lehet prébalni, pl. itt: https://toolbox.googleapps.com/apps/dig/#A/).

A DNS szolgaltatas hidnya bonyolult feladatta teszi a konténerek kommunikaciéjanak megvalésitasat,
hiszen példaul egy Ujrainditott konténer esetében semmi nem garantalja azt, hogy Ujra a korabbi IP-
cimét kapja meg a haldzaton.

Amennyiben sajat halézatot (,user-defined bridge”) hozunk létre, azon belll a névfeloldas
automatikusan biztositott, az egyes konténerekre konkrét IP-cimiik helyett elegendé elnevezésikkel
(pl. todo-database) hivatkoznunk a haldzati kommunikacié soran, igy az esetleges IP-cim valtas
sem okoz gondot az alkalmazas lGzemeltetésében.

Feladatok

e Flash szerver és Redis cache belizemelése
e Terhelés elosztas és monitorozas HAProxy segitségével
e Todo webalkalmazas belizemelése + Forraskod

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:]
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto?rev=1742996208 ;' F}

Last update: 2025/03/26 13:36

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:05

https://toolbox.googleapps.com/apps/dig/#A/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informacios_rendszerek_integralasa:docker_loadbalancer
https://edu.iit.uni-miskolc.hu/_media/tanszek:oktatas:informatikai_rendszerek_epitese:pasted:20250326-131416.pdf
https://github.com/aron123/docker-tutorial
https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_ismerteto?rev=1742996208

	Konténer alapú virtualizáció Docker segítségével
	Cloud Computing
	Konténerek
	Docker
	Architektúra
	Konténerek és képfájlok
	Perzisztens tárolók
	Hálózat virtualizáció
	Feladatok

