2026/02/16 12:04 1/5 Docker virtualizacio

Docker virtualizacio

A kovetkezékben megnézzik hogyan lehet hasznalni a gyakorlatban a népszerd Docker virtualizaciot.

Kérem, hogy mindenki Iépjen be a http://docker.iit.uni-miskolc.hu/ oldalon. Majd Iépjen be ugyanitt a
megjelend start gombra kattintva.

A megjelend képen bal oldalon a “+ Add new instance” gomb megnyomasa utan a kdvetkezd képet
fogjuk latni:

cOvuny3e_cOvuoZie7 5en00f]1 120

JPEMPGET

Hozzunk létre egy app.py nevé allomanyt, a kdvetketd parancs futtatdsaval, és nyomjuk meg a Ctrl+d
a befejezéshez:

cat>app.py

A delete gomb melletti Editor feliratd gomb megnyomasaval egy Uj ablakban megjelenik a fajl editor.
Ebben nyissuk meg a most Iétrehozott app.py-t.

Masoljuk be az editorba az alabbi kédot:
time

redis
flask Flask

app = Flask(name
cache redis.Redis(host="'redis', port

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

http://docker.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:1.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Adocker_vitualizacio
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:2.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Adocker_vitualizacio

Last
update:
2022/01/13
08:47

tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio?rev=1642063620

get hit count
retries
True:

cache.incr('hits"
redis.exceptions.ConnectionError exc:
retries
exc
retries -
time.sleep

app.route('/"'
hello
count = get hit count
'Hello World! I have been seen {} times.\n'.format(count

Ez a Python program az egyik legegyszer(ibb Flask elnevezés(webkiszolgalot/keretrendszert mutatja.
A fenti kddrészlet egy szamlalét valdsit meg, ami a redis nevl cache rendszer segitségével szamolja
a latogatdkat.

Hozzunk létre egy requirements.txt nevi allomanyt a korabbi mddon:
cat>requirements.txt
Majd az editor segitségével masoljuk bele az alabbi sorokat:

flask
redis

Ezzel definidljuk, hogy az alkalmazasunknak mik a fliiggéségei. Ebben az esetben ezek a flask
framework és a redis cache. Ez azért kell, mert a virtualis gép Ures konfiguracidval indul, és a
requirements.txt hasznalataval fogjuk telepiteni a fliggdségeket. Azaz kézzel nem telepitlink semmit,
csak szabvanyos modon

Dockerfile létrehozasa

Hozzunk létre egy Dockerfile elnevezés(dllomanyt a kdvetkez6 tartalommal a szokdsos mdodon:

FROM python:3.7-alpine

WORKDIR /code

ENV FLASK APP=app.py

ENV FLASK RUN HOST=0.0.0.0

RUN apk add --no-cache gcc musl-dev linux-headers
COPY requirements.txt requirements.txt

RUN pip install -r requirements.txt

EXPOSE 5000

COPY .

CMD ["flask", "run"]

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:04

2026/02/16 12:04 3/5 Docker virtualizacio

Itt meg kell dlinunk egy kis magyarazatra. A Dockerfile feladata az, hogy Iépésrdél |épésre definidlja a
virtualis gép létrehozasat.

Soronként a kovetkezdéket definialjuk:

» Hozzon létre egy kiinduld virtualis gépet (image) a python 3.7-es tamogatassal és a alpine
nev(linux kernellel.

e a munkakonyvtarunk a /code lesz.

o Allitsunk be két kdrnyezeti valtozét, ami a flask-nak sziikséges a kiszolgalashoz.

* Telepitslik a gcc-t és mas fliggdségeket. (ez azért kell, mert a Python sok csomagot c/c++
forras allomanyokbdl fordit)

e masoljuk be a requirements.txt-t a munkakényvtarba (ez azért kell, mert a virtualis gépnek
sajat fajlrendszere van, a Dockerfile mellett 1év6 allomanyokat nem tudja kdzvetlendl olvasni.)

e EXPOSE parancs tcp portot nyit meg kifelé (jelen esetben az 5000-est)

e mindent masoljuk be a munkakdényvtarba

e az utolsé sor a telepités utani inditdé parancsot definidlja, jelen esetben: “flask run”

Compose dllomany létrehozdasa

Mas leirdsokban ennél a pontnal elinditjdk a virtualis gépet. Mi nem tesszik meg, hanem
tovabbléplink a docker-compose lehetéségeire, amivel rugalmasan tudunk tébb virtualis gépet
egyszerre kezelni. Nem feltétlendl kell Dockerfile-t sem |étrehozni, ha Interneten is elérhet6
szabvanyos konfiguracidkat hasznalunk.

Hozzuk Iétre a docker-compose.yml allomanyt a szokasos modon:

version: "3.3"
services:
web:
build:
ports:
"80:5000"
redis:
image: "redis:alpine"

Ez az dllomany szolgaltatdsokban gondolkodik. Minden service egy kilénallé docker image, viszont a
neviikre hivatkozva belséleg elérik egymast. A fenti konfiguracié web elnevezésl szolgaltatasat a
build: . miatt a Dockerfile alapjan hozzuk létre, viszont a masik redis szolgaltatast a szabvanyos
“redis:alpine” konfiguracié alapjan hasznaljuk.

A web esetén a belsdleg kinyitott 5000-es portot lathatéva tesszik a 80-as port-on.
Inditsuk el a kdvetkezd parancsot és varjuk meg ameddig lefut:

docker-compose up

A kovetkezd képernyéhoz hasonlét kell latnunk, ha mindent jél allitottunk be eléz6leg. Nyomjuk meg a
nyillal jel6lt gombot.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2022/01/13
08:47

tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio?rev=1642063620

Fejlesztési lehetéségek

Frissitsuk tobbszor a bdngész6t, lathatjuk, hogy a latogatasszam dinamikusan frissal.
Ctrl + ¢ segitségével megallithatjuk a futtatast.

cseréljik le a docker-compose.yml tartalmat a kdvetkezdre:

version: "3.3"
services:
web:
build:
ports:
"5000:5000"
volumes:
- .:/code
environment:
FLASK ENV: development
redis:
image: "redis:alpine"

A volumes beallitja, hogy a virtualis gépben belil levd kdnyvtar, jelen esetben a working directory a
gazda rendszerhez legyen kotve, illetve kimasolva. Ha nem a gydkérbe szeretnénk mappelni, akkor
pl: ./mycode:/code is megadhatd, de a mycode kényvtarnak az inditas el6tt 1éteznie kell.

Inditsuk el Gjra a rendszert:
docker-compose up

Majd lathatd, hogy a konzolban developer médra kapcsoltunk. Médositsuk az editor segitségével a
app.py-t, mondjuk az utolsé fliggvényben a kiirds szovegét és frissitsik a bongészot.

Docker compose parancsok

Futo virtualis gépek listazasa:

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:04

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:3.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Adocker_vitualizacio

2026/02/16 12:04 5/5

Docker virtualizacio

docker-compose ps

Egy adott instance milyen kérnyezeti valtozékat hasznal?
docker-compose run web env

Hogyan allithatjuk le a szolgaltatasokat?
docker-compose stop

Hogyan tudunk teljesen letéréini mindent leallitas utan?
docker-compose down --volumes

Hogyan tudunk shellbe belépni egy konténeren belil?
docker-compose exec <containername> sh

Honnan tudok eldre elkészitett minta container-eket letolteni?

https://github.com/docker/awesome-compose

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:

https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio?rev=1642063620

Last update: 2022/01/13 08:47

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://github.com/docker/awesome-compose
https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio?rev=1642063620

	[Docker virtualizáció]
	[Docker virtualizáció]
	Docker virtualizáció
	Dockerfile létrehozása
	Compose állomány létrehozása
	Fejlesztési lehetőségek
	Docker compose parancsok

