
2026/02/16 12:05 1/5 Docker virtualizáció

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Docker virtualizáció

A következőkben megnézzük hogyan lehet használni a gyakorlatban a népszerű Docker virtualizációt.

Kérem, hogy mindenki lépjen be a http://docker.iit.uni-miskolc.hu/ oldalon. Majd lépjen be ugyanitt a
megjelenő start gombra kattintva.

A megjelenő képen bal oldalon a “+ Add new instance” gomb megnyomása után a következő képet
fogjuk látni:

Hozzunk létre egy app.py nevő állományt, a követkető parancs futtatásával, és nyomjuk meg a Ctrl+d
a befejezéshez:

cat>app.py

A delete gomb melletti Editor feliratú gomb megnyomásával egy új ablakban megjelenik a fájl editor.
Ebben nyissuk meg a most létrehozott app.py-t.

Másoljuk be az editorba az alábbi kódot:

import time
 
import redis
from flask import Flask
 
app = Flask(__name__)
cache = redis.Redis(host='redis', port=6379)
 

http://docker.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:1.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Adocker_vitualizacio
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:2.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Adocker_vitualizacio


Last
update:
2024/04/17
06:47

tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio?rev=1713336427

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:05

def get_hit_count():
    retries = 5
    while True:
        try:
            return cache.incr('hits')
        except redis.exceptions.ConnectionError as exc:
            if retries == 0:
                raise exc
            retries -= 1
            time.sleep(0.5)
 
@app.route('/')
def hello():
    count = get_hit_count()
    return 'Hello World! I have been seen {} times.\n'.format(count)

Ez a Python program az egyik legegyszerűbb Flask elnevezésű webkiszolgálót/keretrendszert mutatja.
A fenti kódrészlet egy számlálót valósít meg, ami a redis nevű cache rendszer segítségével számolja
a látogatókat.

Hozzunk létre egy requirements.txt nevű állományt a korábbi módon:

cat>requirements.txt

Majd az editor segítségével másoljuk bele az alábbi sorokat:

flask
redis

Ezzel definiáljuk, hogy az alkalmazásunknak mik a függőségei. Ebben az esetben ezek a flask
framework és a redis cache. Ez azért kell, mert a virtuális gép üres konfigurációval indul, és a
requirements.txt használatával fogjuk telepíteni a függőségeket. Azaz kézzel nem telepítünk semmit,
csak szabványos módon.

Dockerfile létrehozása

Hozzunk létre egy Dockerfile elnevezésű állományt a következő tartalommal a szokásos módon:

FROM python:3.7-alpine
WORKDIR /code
ENV FLASK_APP=app.py
ENV FLASK_RUN_HOST=0.0.0.0
RUN apk add --no-cache gcc musl-dev linux-headers
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
EXPOSE 5000
COPY . .
CMD ["flask", "run"]



2026/02/16 12:05 3/5 Docker virtualizáció

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Itt meg kell állnunk egy kis magyarázatra. A Dockerfile feladata az, hogy lépésről lépésre definiálja a
virtuális gép létrehozását.

Soronként a következőket definiáljuk:

Hozzon létre egy kiinduló virtuális gépet (image) a python 3.7-es támogatással és a alpine
nevű linux kernellel.
a munkakönyvtárunk a /code lesz.
Állítsunk be két környezeti változót, ami a flask-nak szükséges a kiszolgáláshoz.
Telepítsük a gcc-t és más függőségeket. (ez azért kell, mert a Python sok csomagot c/c++
forrás állományokból fordít)
másoljuk be a requirements.txt-t a munkakönyvtárba (ez azért kell, mert a virtuális gépnek
saját fájlrendszere van, a Dockerfile mellett lévő állományokat nem tudja közvetlenül olvasni.)
EXPOSE parancs tcp portot nyit meg kifelé (jelen esetben az 5000-est)
mindent másoljuk be a munkakönyvtárba
az utolsó sor a telepítés utáni indító parancsot definiálja, jelen esetben: “flask run”

Compose állomány létrehozása

Más leírásokban ennél a pontnál elindítják a virtuális gépet. Mi nem tesszük meg, hanem
továbblépünk a docker-compose lehetőségeire, amivel rugalmasan tudunk több virtuális gépet
egyszerre kezelni. Nem feltétlenül kell Dockerfile-t sem létrehozni, ha Interneten is elérhető
szabványos konfigurációkat használunk.

Hozzuk létre a docker-compose.yml állományt a szokásos módon:

version: "3.3"
services:
  web:
    build: .
    ports:
      - "80:5000"
  redis:
    image: "redis:alpine"

Ez az állomány szolgáltatásokban gondolkodik. Minden service egy különálló docker image, viszont a
nevükre hivatkozva belsőleg elérik egymást. A fenti konfiguráció web elnevezésű szolgáltatását a
build: . miatt a Dockerfile alapján hozzuk létre, viszont a másik redis szolgáltatást a szabványos
“redis:alpine” konfiguráció alapján használjuk.

A web esetén a belsőleg kinyitott 5000-es portot láthatóvá tesszük a 80-as port-on.

Indítsuk el a következő parancsot és várjuk meg ameddig lefut:

docker-compose up

A következő képernyőhöz hasonlót kell látnunk, ha mindent jól állítottunk be előzőleg. Nyomjuk meg a
nyíllal jelölt gombot.



Last
update:
2024/04/17
06:47

tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio?rev=1713336427

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 12:05

Fejlesztési lehetőségek

Frissítsük többször a böngészőt, láthatjuk, hogy a látogatásszám dinamikusan frissül.

Ctrl + c segítségével megállíthatjuk a futtatást.

cseréljük le a docker-compose.yml tartalmát a következőre:

version: "3.3"
services:
  web:
    build: .
    ports:
      - "5000:5000"
    volumes:
      - .:/code
    environment:
      FLASK_ENV: development
  redis:
    image: "redis:alpine"

A volumes beállítja, hogy a virtuális gépben belül levő könyvtár, jelen esetben a working directory a
gazda rendszerhez legyen kötve, illetve kimásolva. Ha nem a gyökérbe szeretnénk mappelni, akkor
pl: ./mycode:/code is megadható, de a mycode könyvtárnak az indítás előtt léteznie kell.

Indítsuk el újra a rendszert:

docker-compose up

Majd látható, hogy a konzolban developer módra kapcsoltunk. Módosítsuk az editor segítségével a
app.py-t, mondjuk az utolsó függvényben a kiírás szövegét és frissítsük a böngészőt.

Docker compose parancsok

Futó virtuális gépek listázása:

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:3.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Adocker_vitualizacio


2026/02/16 12:05 5/5 Docker virtualizáció

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

docker-compose ps

Szolgáltatások log-jainak megtekintése:

docker-compose logs -t -f webs

-t az időbélyeget, a -f folyamatos nyomon követést biztosít.

Egy adott instance milyen környezeti változókat használ?

docker-compose run web env

Hogyan állíthatjuk le a szolgáltatásokat?

docker-compose stop

Hogyan tudunk teljesen letörölni mindent leállítás után?

docker-compose down --volumes

Hogyan tudunk shellbe belépni egy konténeren belül?

docker-compose exec <containername> sh

Hogyan tudjuk újrafordítani a tárolót?

Általában a fejlesztés során a változások elmentődnek és a módosítások nem hajtódnak végre.
Ilyenkor hasznos az alábbi parancs:

docker-compose build --no-cache

Honnan tudok előre elkészített minta container-eket letölteni?

https://github.com/docker/awesome-compose

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio?rev=1713336427

Last update: 2024/04/17 06:47

https://github.com/docker/awesome-compose
https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:docker_vitualizacio?rev=1713336427

	[Docker virtualizáció]
	[Docker virtualizáció]
	Docker virtualizáció
	Dockerfile létrehozása
	Compose állomány létrehozása
	Fejlesztési lehetőségek
	Docker compose parancsok



