
2026/02/16 09:02 1/7 Informatikai Rendszerek

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Informatikai Rendszerek

Az alábbiakban bemutatjuk, hogy alapvetően milyen módszerekkel lehet informatikai
rendszerkomponenseket fejleszteni. Az informatikai rendszerek és egyes komponenseik abban
különböznek a hagyományos alkalmazásoktól, hogy elvárjuk tőlük, hogy szolgáltatásként közel
állandó rendelkezésre állással működjenek. Viszont ahhoz hogy, egy alkalmazás/szoftver
szolgáltatásként tudjon működni, rögtön felveti a következő kérdéseket:

hogyan lehet a komponens életciklusát vezérelni?
hogyan tud gazdálkodni a környezete erőforrásaival?
honnan/hogyan kaphatja meg a futásához szükséges konfigurációs informáicót?
hogyan tud kommunikálni a környezetével?

Natív fejlesztési módszer

Bár ez a legrégebbi módszer, mégis sok tekintetben ma is alkalmazzák. Például beágyazazott
rendszerekben. A forráskódot egy adott CPU és operációs rendszer kombinációra fordítjuk le: pl.
(amd64/Ubuntu). Lehetőség nyílik a futtatandó kód finomhangolására, sebességének vagy méretének
optimalizálásra. A komponensek folyamatos futtatásának követelménye komoly fejlesztői felkészülést
kíván.

c/c++/d fordítók: msvc, gcc, clang, dlang
pointerek, referenciák, heap/stack memória kezelés
a lefoglalt memória felszabadítása a fejlesztő feladata
nagy kihívást lehet: API hívásokat operációs rendszer szinten ismerni kell
a különböző komponensek integrációja körülményes: a szerilaizációt egyedileg kell
implementálni

Nincs beépített erőforrás kezelés

az erőforrás gazdálkodás a fejlesztő feladata

Nincs széleskörben használt függőségkezelés

a felhasznált függőségek (mások által fejlesztett komponensek) szabványos kezelése nem

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:nativ_fejlesztes.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Afejlesztesi_modszerek

Last
update:
2023/03/24
14:50

tanszek:oktatas:informatikai_rendszerek_epitese:fejlesztesi_modszerek https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:fejlesztesi_modszerek?rev=1679669447

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

egységes

RELEASE/DEBUG módú fordítási módszer lassítja a fejlesztést

előfordulhat, hogy másik fordítóval a program működése eltér (hibás, lassabb)

Az alkalmazás életciklusát (indítását, leállítását, monitorozását) az operációs rendszer
kezeli

Speciális alkalmazási területei

maximális tranzakciósebességre van szükség
IOT eszközök: nem áll rendelkezésre elegendő memória a futtatáshoz vagy FPGA megoldások
szükségesek

Hibák

Nincs szabványos kivételkezelés
A fejlesztőnek kell kezelni a hibákat, a lekezeletlen problémák rendszerösszeomláshoz vezetnek
Nagyon körülményes a hibák felkutatása (memória dump, speciális log-ok)
Nagyon könnyű hibázni – nem inicializált adat struktúrák

Virtuális gépes fejlesztési módszer

A Java VM bevezetése (1997-) óta terjedt el. Egy virtuális processzort és a hozzá tartozó úgynevezett
Byte Kódot, saját gépi kódú utasításkészletet definiál. A forráskódot nem közvetlenül a CPU-ra fordítja
le, hanem a virtuális gép saját byte kódjára, amit futtatáskor a gazda rendszer gépi kódjára alakít át.
Az virtuális gép általában c/c++ nyelven írt natív alkalmazás, ami általában több plattformon is
működik.

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:vm_fejlesztes.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Afejlesztesi_modszerek

2026/02/16 09:02 3/7 Informatikai Rendszerek

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Fontosabb virtuális gép implementációk

Java Virtual Machine
Common Language Runtime (CLR): .net rendszer
Adobe Flash Player: swf futtatás
HHVM: php alapú VM a facebook fejlesztésében
ABAP: SAP virtuális gépe
LLVM: ez nem a klasszikus VM, hanem a forrást egy u.n. llvm byte kódra fordítja, majd ez fordul
le natív kóddá. “LLVM is designed around a language-independent intermediate representation
that serves as a portable, high-level assembly language that can be optimized with a variety of
transformations over multiple passes.”
Zend Engine: php

Just in Time (JIT) fordítás

A virtuális gép képes az alkalmazások kódját folyamatosan optimalizálni, a byte kód átalakítás
dinamikus.

Memóriakezelés

Pointerek használata tiltott (általában)
Szemétgyüjtési algoritmus felel a nem használt memória felszabadításáért

Beépített erőforrás kezelés

az erőforrás gazdálkodás a fejlesztő feladata
a VM rendelkezik erőforráskezelő lehetőségekkel

Beépített, széleskörben használt függőségkezelés

a felhasznált függőségek (mások által fejlesztett komponensek) szabványos kezelése egységes
(pl. Maven)

RELEASE/DEBUG módú fordítási módszer nem értelmezett

a fejlesztés a korábbi DEBUG módhoz hasonló, a nyomkövetésnél az optimalizáció rejtve marad

Az alkalmazás életciklusát (indítását, leállítását, monitorozását) a virtuális gép kezeli

Komponensek fejlesztése

együttműködő komponensek fejlesztéséhez ideális, mivel a VM-en futó alkalmazások TCP/IP
segítségével könnyen kommunikálhatnak egymással
a hálózati objektumokat önelemzés segítségével könnyen lehet használni, illetve módosítani.

Last
update:
2023/03/24
14:50

tanszek:oktatas:informatikai_rendszerek_epitese:fejlesztesi_modszerek https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:fejlesztesi_modszerek?rev=1679669447

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

(Java reflection)

Middleware fejlesztési módszer

Alkalmazás kiszolgálós fejlesztési módszer. Eredetileg a Sun Microsystems adta ki 1999-ben akkor
még J2EE néven. A szabványos specifikáció jelenleg a 8-as verziónál tart (2017):
https://javaee.github.io/javaee-spec/

Jellemzően Java nyelven implementált Middleware-t alkalmaz. Ismertebb (26) Java middleware
Fontosabb Glashfish, Websphere, Weblogic, JBoss, Wildfly
Az alkalmazások teljes életciklusát a middleware kezeli.

Web Container: webes komponensek életciklusának kezelése.

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:jee_fejlesztes.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Afejlesztesi_modszerek
https://javaee.github.io/javaee-spec/
https://en.wikipedia.org/wiki/List_of_application_servers

2026/02/16 09:02 5/7 Informatikai Rendszerek

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Servlet: Olyan Java osztály ami Http kérések szabványos feldolgozásáért és válaszaiért felel.
Eredetileg a dinamikus Web tartalmak létrehozásáért felel. A generált tartalom HTML, de újabban
JSON. Tartalmaz URL mapping-et is. 1996-ban mutatták be először, mint koncepciót!

Automatikusan generálható servleteket is létre lehet hozni a a JSP techniológia segítségével,
ahol a HTML kód tartalmazhat Java kódokat is.
HTTP kérések: GET, POST, PUT, DELETE, OPTIONS

Java servlet API:

Java API for RESTful Web Services (JAX-RS 2.0)
Java API for XML Web Services (JAX-WS)

Mintapélda:

 public class MyServlet extends HttpServlet{

 public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
 {
 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();

 pw.println("<html><body>");
 pw.println("Hello from servlet");
 pw.println("</body></html>");

 pw.close();
 }
 }

A metaadatok kezelése az első változatokban XML leírókkal történt. Ezekben lehetett megadni, hogy
egy osztály hogyan viselkedjen: URL mapping, futó példányok száma, stb.

ESB - Enterprise Service Bus

https://en.wikipedia.org/wiki/Java_API_for_RESTful_Web_Services
https://en.wikipedia.org/wiki/Java_API_for_XML_Web_Services
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+ioexception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+printwriter

Last
update:
2023/03/24
14:50

tanszek:oktatas:informatikai_rendszerek_epitese:fejlesztesi_modszerek https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:fejlesztesi_modszerek?rev=1679669447

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

Szolgáltatás BUSZ: Szolgáltatás Orientált Architektúra (SOA). Lazán összekapcsolt komponenseken
(szolgáltatások) alapul. A hálózatoknál ismert BUSZ fogalom analógiája.

Legfontosabb funkciók:

Üzenet továbbítás - Message Routing a szolgáltatások között
Szolgáltatás felderítés
Különböző protokollok konverziójának támogatása
Validáció - séma validáció
Szolgáltatások verziókezelése
Monitoring szolgáltatások
Üzleti folyamatok menedzselése

Előnyök:

könnyen skálázható használat - lokális szolgáltatástól a teljes vállalti elérésig
az integráció implementálása (kódolás) helyett, konfigurációk kialakítása
lazán kapcsoltság miatt könnyen lehet szolgáltatásokat indítani, leállítani

Hátrányok:

lassú kommunikáció
központosítás miatt, hiba esetén teljes leállás lehet
nagy komplexitás a konfigurációban

Ismertebb implementációk:

Azure Service Bus, Microsoft Biztalk Server, Mule ESB, Oracle ESB, IBM Websphere ESB, JBOSS
ESB

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:esb.png?id=tanszek%3Aoktatas%3Ainformatikai_rendszerek_epitese%3Afejlesztesi_modszerek

2026/02/16 09:02 7/7 Informatikai Rendszerek

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:fejlesztesi_modszerek?rev=1679669447

Last update: 2023/03/24 14:50

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:fejlesztesi_modszerek?rev=1679669447

	[Informatikai Rendszerek]
	Informatikai Rendszerek
	Natív fejlesztési módszer
	Nincs beépített erőforrás kezelés
	Nincs széleskörben használt függőségkezelés
	RELEASE/DEBUG módú fordítási módszer lassítja a fejlesztést
	Az alkalmazás életciklusát (indítását, leállítását, monitorozását) az operációs rendszer kezeli
	Speciális alkalmazási területei
	Hibák

	Virtuális gépes fejlesztési módszer
	Fontosabb virtuális gép implementációk
	Just in Time (JIT) fordítás
	Memóriakezelés
	Beépített erőforrás kezelés
	Beépített, széleskörben használt függőségkezelés
	RELEASE/DEBUG módú fordítási módszer nem értelmezett
	Az alkalmazás életciklusát (indítását, leállítását, monitorozását) a virtuális gép kezeli
	Komponensek fejlesztése

	Middleware fejlesztési módszer
	ESB - Enterprise Service Bus

