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Informatikai Rendszerek

Az alábbiakban bemutatjuk, hogy alapvetően milyen módszerekkel lehet informatikai
rendszerkomponenseket fejleszteni. Az informatikai rendszerek és egyes komponenseik abban
különböznek a hagyományos alkalmazásoktól, hogy elvárjuk tőlük, hogy szolgáltatásként közel
állandó rendelkezésre állással működjenek. Viszont ahhoz hogy, egy alkalmazás/szoftver
szolgáltatásként tudjon működni, rögtön felveti a következő kérdéseket:

hogyan lehet a komponens életciklusát vezérelni?
hogyan tud gazdálkodni a környezete erőforrásaival?
honnan/hogyan kaphatja meg a futásához szükséges konfigurációs informáicót?
hogyan tud kommunikálni a környezetével?

Natív fejlesztési módszer

Bár ez a legrégebbi módszer, mégis sok tekintetben ma is alkalmazzák. Például beágyazazott
rendszerekben. A forráskódot egy adott CPU és operációs rendszer kombinációra fordítjuk le: pl.
(amd64/Ubuntu). Lehetőség nyílik a futtatandó kód finomhangolására, sebességének vagy méretének
optimalizálásra. A komponensek folyamatos futtatásának követelménye komoly fejlesztői felkészülést
kíván.

c/c++/d fordítók: msvc, gcc, clang, dlang
pointerek, referenciák, heap/stack memória kezelés
a lefoglalt memória felszabadítása a fejlesztő feladata
nagy kihívást lehet: API hívásokat operációs rendszer szinten ismerni kell
a különböző komponensek integrációja körülményes: a szerilaizációt egyedileg kell
implementálni

Nincs beépített erőforrás kezelés

az erőforrás gazdálkodás a fejlesztő feladata

Nincs széleskörben használt függőségkezelés

a felhasznált függőségek (mások által fejlesztett komponensek) szabványos kezelése nem
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egységes

RELEASE/DEBUG módú fordítási módszer lassítja a fejlesztést

előfordulhat, hogy másik fordítóval a program működése eltér (hibás, lassabb)

Az alkalmazás életciklusát (indítását, leállítását, monitorozását) az operációs rendszer
kezeli

Speciális alkalmazási területei

maximális tranzakciósebességre van szükség
IOT eszközök: nem áll rendelkezésre elegendő memória a futtatáshoz vagy FPGA megoldások
szükségesek

Hibák

Nincs szabványos kivételkezelés
A fejlesztőnek kell kezelni a hibákat, a lekezeletlen problémák rendszerösszeomláshoz vezetnek
Nagyon körülményes a hibák felkutatása (memória dump, speciális log-ok)
Nagyon könnyű hibázni – nem inicializált adat struktúrák

Virtuális gépes fejlesztési módszer

A Java VM bevezetése (1997-) óta terjedt el. Egy virtuális processzort és a hozzá tartozó úgynevezett
Byte Kódot, saját gépi kódú utasításkészletet definiál. A forráskódot nem közvetlenül a CPU-ra fordítja
le, hanem a virtuális gép saját byte kódjára, amit futtatáskor a gazda rendszer gépi kódjára alakít át.
Az virtuális gép általában c/c++ nyelven írt natív alkalmazás, ami általában több plattformon is
működik.
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Fontosabb virtuális gép implementációk

Java Virtual Machine
Common Language Runtime (CLR): .net rendszer
Adobe Flash Player: swf futtatás
HHVM: php alapú VM a facebook fejlesztésében
ABAP: SAP virtuális gépe
LLVM: ez nem a klasszikus VM, hanem a forrást egy u.n. llvm byte kódra fordítja, majd ez fordul
le natív kóddá. “LLVM is designed around a language-independent intermediate representation
that serves as a portable, high-level assembly language that can be optimized with a variety of
transformations over multiple passes.”
Zend Engine: php

Just in Time (JIT) fordítás

A virtuális gép képes az alkalmazások kódját folyamatosan optimalizálni, a byte kód átalakítás
dinamikus.

Memóriakezelés

Pointerek használata tiltott (általában)
Szemétgyüjtési algoritmus felel a nem használt memória felszabadításáért

Beépített erőforrás kezelés

az erőforrás gazdálkodás a fejlesztő feladata
a VM rendelkezik erőforráskezelő lehetőségekkel

Beépített, széleskörben használt függőségkezelés

a felhasznált függőségek (mások által fejlesztett komponensek) szabványos kezelése egységes
(pl. Maven)

RELEASE/DEBUG módú fordítási módszer nem értelmezett

a fejlesztés a korábbi DEBUG módhoz hasonló, a nyomkövetésnél az optimalizáció rejtve marad

Az alkalmazás életciklusát (indítását, leállítását, monitorozását) a virtuális gép kezeli

Komponensek fejlesztése

együttműködő komponensek fejlesztéséhez ideális, mivel a VM-en futó alkalmazások TCP/IP
segítségével könnyen kommunikálhatnak egymással
a hálózati objektumokat önelemzés segítségével könnyen lehet használni, illetve módosítani.
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(Java reflection)

Middleware fejlesztési módszer

Alkalmazás kiszolgálós fejlesztési módszer. Eredetileg a Sun Microsystems adta ki 1999-ben akkor
még J2EE néven. A szabványos specifikáció jelenleg a 8-as verziónál tart (2017):
https://javaee.github.io/javaee-spec/

Jellemzően Java nyelven implementált Middleware-t alkalmaz. Ismertebb (26) Java middleware
Fontosabb Glashfish, Websphere, Weblogic, JBoss, Wildfly
Az alkalmazások teljes életciklusát a middleware kezeli.

Web Container: webes komponensek életciklusának kezelése.
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Servlet: Olyan Java osztály ami Http kérések szabványos feldolgozásáért és válaszaiért felel.
Eredetileg a dinamikus Web tartalmak létrehozásáért felel. A generált tartalom HTML, de újabban
JSON. Tartalmaz URL mapping-et is. 1996-ban mutatták be először, mint koncepciót!

Automatikusan generálható servleteket is létre lehet hozni a a JSP techniológia segítségével,
ahol a HTML kód tartalmazhat Java kódokat is.
HTTP kérések: GET, POST, PUT, DELETE, OPTIONS

Java servlet API:

Java API for RESTful Web Services (JAX-RS 2.0)
Java API for XML Web Services (JAX-WS)

Mintapélda:

  public class MyServlet extends HttpServlet{
 
    public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
        {
        res.setContentType("text/html");
        PrintWriter pw=res.getWriter();
 
        pw.println("<html><body>");
        pw.println("Hello from servlet");
        pw.println("</body></html>");
 
        pw.close();
        }
    }

A metaadatok kezelése az első változatokban XML leírókkal történt. Ezekben lehetett megadni, hogy
egy osztály hogyan viselkedjen: URL mapping, futó példányok száma, stb.

ESB - Enterprise Service Bus

https://en.wikipedia.org/wiki/Java_API_for_RESTful_Web_Services
https://en.wikipedia.org/wiki/Java_API_for_XML_Web_Services
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+ioexception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+printwriter
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Szolgáltatás BUSZ: Szolgáltatás Orientált Architektúra (SOA). Lazán összekapcsolt komponenseken
(szolgáltatások) alapul. A hálózatoknál ismert BUSZ fogalom analógiája.

Legfontosabb funkciók:

Üzenet továbbítás - Message Routing a szolgáltatások között
Szolgáltatás felderítés
Különböző protokollok konverziójának támogatása
Validáció - séma validáció
Szolgáltatások verziókezelése
Monitoring szolgáltatások
Üzleti folyamatok menedzselése

Előnyök:

könnyen skálázható használat - lokális szolgáltatástól a teljes vállalti elérésig
az integráció implementálása (kódolás) helyett, konfigurációk kialakítása
lazán kapcsoltság miatt könnyen lehet szolgáltatásokat indítani, leállítani

Hátrányok:

lassú kommunikáció
központosítás miatt, hiba esetén teljes leállás lehet
nagy komplexitás a konfigurációban

Ismertebb implementációk:

Azure Service Bus, Microsoft Biztalk Server, Mule ESB, Oracle ESB, IBM Websphere ESB, JBOSS
ESB
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