2025/10/02 21:59 1/6 1. Kédbazis

Eredeti angol forras: https://12factor.net/

1. Kédbazis

Code repository

Az idedlis alkalmazas forraskéd mddositasait verzid kovet6 rendszerben érdemes tartani és nyomon
kdvetni. (Subversion, Mercurial, Git) Ez még akkor is igaz, ha 'egy emberes' projektet fejlesztiink.

A kéd tar (code repository) nem mas, mint a médositasok adatbazisdnak egy 'sajat' masolata.
(roviditve 'kdd repd', szimplan 'repd')

A 'kodbazis' lehet barmilyen repé (centralizalt verzidkovetd esetén Subversion) vagy a repd barmilyen
részhalmaza, amelyik tartalmazza a 'root commit'-ot (a kezdeti commitot).

Alkalmazas vs. elosztott rendszer

Mindig 1-1 megfeleltetés legyen a kddbazis és az alkalmazas kozott:

 ha tobb kddbdazisunk van, az soha nem lehet egy alkalmazas, hanem ilyenkor 'elosztott
rendszer'-rél beszélink.

Az elosztott rendszer minden komponensét kilon alkalmazasnak kell tekinteni. Ha tobb alkalmazas
ugyanazt a kdédbazist hasznalja (arra épll), az mindenképpen hibas megkdzelités. Ha nem tudjuk
elkerllIni ezt az esetet, akkor tobb alkalmazas altal kozésen hasznalt kédot olyan kdnyvtarakra (lib)
kell felosztani, amit valamilyen fliggéségkezelé (dependency manager) kezel. Ez egyszer(refactoring
modszerekkel kénnyen elérhetd.

Deployment

Egy alkalmazasnak minding egy kodbazisa van, de tobb telepitése, telepitési valtozata (deploy) lehet.
A 'deploy' az alkalmazas egy éppen futd példanya. Ez altalaban valamilyen 'production site', éles
nyilvanossagra hozott valtozat. Fontos feltétel, hogy minden fejlesztd képes legyen helyi futtatd
kornyezetet kialakitani (local development environment) - (ami lehet valamilyen felhérendszerben is)
- amelyek 'deploy'-nak, telepitésnek tekinthetdek.

Developer -> Staging -> Production

A kédbazis nem valtozik a telepitések kdzott, annak kiilonb6z6 verzidi lehetnek aktivak
telepitésenként. (pl. tesztelési célbdl) Egy fejlesztének sok olyan commit-ja lehet, amelyet még nem
zart le (nincs staging fazisban). A staging fazisban Iévé commitok még nincsenek deploy-olva, és nem
tekinthetdek production valtozatnak. De ettdl fliggetlenil ugyanazt a kédbazist hasznaljak és
egymastdl egyedi azonositéval megkilonboztethetbek.

Commitok megjegyzései mindig révid tomoér mondatok legyenek. (pl. utalva a bug tracker
rendszerbeli azonositéra)

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://12factor.net/
https://subversion.apache.org/
https://www.mercurial-scm.org/wiki/Download
https://git-scm.com/
https://subversion.apache.org/

Last
update:
2022/04/27
19:35

tanszek:oktatas:informatikai_rendszerek_epitese:tizenket_faktor https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:tizenket_faktor

2. Fiigg6ségek
Packaging system

A legtébb programozasi nyelv rendelkezik valamilyen kézponti csomagkezel6 rendszerrel. (perl -
CPAN, Rubygems - Ruby, npm - nodejs, Python - pip, c/c++ - autoconf). A kdnyvtarak (el6re definialt
verzidja) a csomagkezeld rendszer segitségével telepithetéek, operacids rendszer szinten vagy
alkalmazas szinten (virtual environment - python), amikor a fligg6ség 'scope'-ja a telepitési
konyvtartol lefelé érvényes.

Dependency declaration manifest (fliggéség deklaracids jegyzék)

Minden fliggéséget és azok verziéit tarolja. Izolalja a developer és production mdédban hasznalt
flggbségeket is.

A csomagkezeld rendszer alkalmazasa egyszerUsiti az alkalmazas telepitését és Uj fejlesztd bevonasat
a projektbe.

3. Konfiguracio

Az alkalmazas konfiguracidja olyan egyedi beallitasok halmaza, amelyik valtozhat a telepitések
kézott.

Az alabbi tipikus konfiguracids beallitasok lehetnek:

» eszkOzkezeldk adatbazisokhoz, memcached, mysql séma, kapcsolat, stb.

* elérési tokenek (API keys) - kddok kulsé szolgaltatasokhoz, pl. Amazon S3 felh6szolgaltatas,
Facebook API

* telepitési konstansok - hostnevek pl. teszt/éles rendszerhez

* kilonb6z6 logolasi szinteket allithatunk be

Az alkalmazas soha nem tartalmazhat konfiguraciés paramétereket a forraskddban. Kivétel: belsd
alkalmazas konfiguracidk, pl. 'routing' informacié maradhat a kédban, mert az belsé konfiguracionak
szamit.

Az alkalmazas konfiguraciét érdemes kdérnyezeti valtozékban tarolni.
Mivel:
* a kdérnyezeti valtozdkat konnyl megvaltoztatni az egyes telepitések kozott, a kéd médositésa
nélkul
e nincs veszélye olyan véletlen commitnak, amivel azonosité kédok, jelszavak kerilhetnek a

repdba.

Java-ban a kornyezeti valtozékat a System.getProperty() hivassal elérhetjik, érdemes a kédban
dinamikusan is alkalmazni.

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/02 21:59

2025/10/02 21:59 3/6 1. Kédbazis

4. Szolgaltatasok

Ezek haldzaton elérhetd olyan (sokszor kiilsd) szolgaltatasok, amelyek a normal mikodéshez
elengedhetetlenek (MySql, MongoDB, ActiveMQ, RabbitMQ, SMTP, Amazon S3, Google Maps stb.)
Rendszer adminisztratorok kezelik hagyomanyos mddon vagy kiilsé szolgaltaték (third-party)

A rugalmas hasznalatukhoz elkerllhetetlen, hogy:

az alkalmazaskdd nem kilonboztetheti meg a lokalis és third party interfészeket

a deploy-olt alkalmazasnak kdnnyen kell valtania a szolgaltatdsok kdzott, kédmddositas nélkil
minden szolgaltatast eréforrasnak kell tekinteni. 1 MySQL adatbazis 1 eréforras, 2 MySQL 2
kilonallé eréforras

attach és detach mechanizmusokat kell kialakitani, ha barmilyen hiba torténik, akkor kénnyen
at lehessen kapcsolni a mikdddre szolgaltatasra

5. Build, Release, Run

A kbédbazis altaldban harom fazisban alakul at telepitett valtozatra:

« build stage: olyan transzformacié, amely a kéd repoét futtathaté kédda alakitja. Kivalasztja a
megfeleld fliggdségeket és kompilalja a binaris kddot és az asseteket (képek, css, js).

* release stage: a build stage-altal generalt build-et kombinalja a hozza tartozé konfiguracié
felhasznalasaval - release

* run stage: alkalmazas futtatdsa a futtatd kornyezetben.

Kovetkezmény: a kdd a release fazisban mar nem mddosithato, tilos barmilyen kézi mddositas.

A deployement tool-ok egyik fontos tulajdonsaga, hogy vissza tudnak Iépni egy korabbi release
valtozatra. pl. Capistrano eszkoz a release-eket kiilon konyvtarban tarolja és szimbolikus linken
hivatkozik rajuk.

Altaldban minden release egyedi azonosit6t kap. pl. release 2017 04 04 21:00:14, vagy egy névekvé
azonositét: v0121. Minden mdédositas kilon release-t kaphat!

A verzi6 kdveto rendszerekben sokszor 'TAG'-el jeldlik ezeket a fontos commitokat.

6. Futo folyamatok

Ugy kell futtatni az alkalmazast, mint egy vagy tobb allapotmentes folyamatot.

A folyamatok kodzott és azokon bellll nincs és nem lehet adatmegosztas és adattarolas. Minden olyan
adatot amelyet perzisztens médon kell tarolni, 'stateful backing service' fogja tarolni. Ha nem igy
hasznaljuk a folyamatokat, akkor a késébbi skalazast nagyon megneheziti.

Ve

Pl. egy nagyméret(fajl letoltésénél a fajlrendszert hasznaljuk, feldolgozzuk a fajlt, majd az eredményt
adatbazisban kell tarolni.

Nem feltételezhetjiik, hogy barmi is cache-elve van a meméridban vagy a lemezen egy tovabbi

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

http://capistranorb.com/

Last
update:
2022/04/27
19:35

tanszek:oktatas:informatikai_rendszerek_epitese:tizenket_faktor https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:tizenket_faktor

(HTTP) kéréshez. Még inkabb azt sem, hogy majd mas futd folyamatok is elérhetik ezt a lokalis
folyamatszint(i cache-t.

Egy komponens Ujrainditasakor azt kell feltételezni, hogy a lokalis cache torl6dni fog (térlédnie is
kell!).

Vannak olyan rendszerek, pl. django compressor, amelyek a leforditott asseteket lokalis cache-ben
taroljak, ezek az assetek a compiling fazisban készliinek el és nem valtozhatnak futtataskor.

Minden session adatot webes alkalmazasok esetén kotelez6en kiils6é Memcached vagy az Ujabb Redis

szolgéltatassal érdemes tarolni, hogy a kdvetkezé kérés egy masik folyamatbdl is el tudja érni.

7. Port binding
Webes alkalmazasok altalaban egy webserver containerben futnak. pl. PHP alkalmazasok Apache
Httpd modulként futnak, vagy a Java alkalmazasok Tomcat Servlet Containeren bell.

A webalkalmazas a HTTP elérését szolgaltatasként exportalja egy porthoz kétve. Lokalis fejlesztésként
a fejlesztd service URL-ként a http://localhost:6120 -cimen éri el az alkalmazas szolgaltatasat.
Telepitéskor a rendszer a hostnevet (localhost) automatikusan kicseréli egy publikusra.

A port binding segitségével egy alkalmazas atalakulhat backing service-nek egy masik szamara az

URL segitségével.

8. Konkurencia

Minden futd alkalmazas a szamitégépen egy vagy tébb folyamatként is reprezentalhatd. A webes
alkalmazasok kilonb6z6képpen kezelik a futd folyamatokat. Egy PHP alkalmazas az apache web
szerver gyermek folyamataként fut, annyi fut beléle amennyit a beallitdsok, valamint a dinamikus
terhelés meghataroz.

A Java virtualis gép ezzel szemben a parhuzamossagot szalakkal oldja meg.

Mindkét esetben a fejleszté minimadlisan befolydsolja/latja a konkurenciat és annak megvaldsitasi
kilonbségeit.

A web alkalmazasok esetén meg kell kiilonboztetni a web és worker tipusu futd folyamatot.

e Web process - kiszolgal egy HTTP kérést.
* Worker process - egy hosszabban futd hattér taszk-ot hajt végre. (barmilyen asszinkron
feladat, pl. szavazas, video vagas, kép atméretezés)

Ez a megklilonbdztetés nem befolyasolja, hogy egy VM ami egyébként egy worker process-t futtat,
azaz valdjaban hany szalat hasznal.

Skalazas esetén pontosan lehet definialni, melyik folyamattipusbdl mennyi fusson egy adott terhelési
szinten. (természetesen az egyes tipusok darabszama nem linearis a terhelés fliggvényében)

Soha nem szabad deamon-ként futtattni egy alkalmazast, vagy PID fajlokat irni. Mindig ra kell

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/02 21:59

https://memcached.org/
https://redis.io/

2025/10/02 21:59 5/6 1. Kédbazis

hagyatkozni az operacids rendszer beépitett folyamat menedzser eszkozeire. pl. Foreman vagy
Upstart. Ezek az eszkdzok gondoskodnak az altaluk menedzselt folyamatok életciklusirél. Kezelik a
felhasznaldi ledllitasokat és Ujrainditasokat is.

9. Eldobhatdsag

A folyamatokat Ugy kell tervezni hogy kdnnyen eldobhatdak legyenek. A folyamatok induldsi idejét
minimalizalni kell. Gyors inditassal a rugalmassag és a robusztussag is egyarant nd. A folyamat
menedzser kdnnyebben mozgathatja a folyamatokat akar egy Uj fizikai gépre is.

Graceful shutdown (kecses leallas) SIGTERM szignal esetén a webes folyamat megengedi a
éppen aktualis kérés feldolgozasat. Tobb kérést viszont nem enged végrehajtani. Ezzel a rendszer
inkonzisztens allapotba esését megakadalyozza.

A worker folyamat SIGTERM esetén visszahelyezi a job-ot az Gizenetsorra.

'Hirtelen halal' esetén (sudden death) leall a folyamat, pl. valamilyen hardver hiba lép fel vagy a
futtaté kornyezetben fellépd barmilyen hiba miatt, a tanacsolt megoldas olyan robusztus lzenetsor
hasznalatat irja eld, ami lecsatlakozds esetén visszavonja az utolsé job-ot a klienstdl. Ezzel az
Ujrainditds utdan nem lesz adatvesztés, sét a felhaszndlé nem értesil/nem érzékeli a hibat.

10. Development/production hasonlésag fenntartasa

Torténetileg kialakult egy szakadék a fejlesztés és a végfelhasznalas/éles lizem (deployment) kozott.

* id6szakadék: a fejlesztd hetekig dolgozik a kédon, ameddig az végfelhasznalasra kerl.

e személyi szakadék: a fejleszto irja a kodot, az operatorok telepitik és inditjak egy elkiloniilo
éles kornyezetben

» eszk0z szakadék: a fejlesztd apache-ot hasznal Windows-on, a production valtozat pedig Nginx-
et Linuxon

Ezért folyamatos integraciés 'Continuous Integration (Cl)' médszereket kell alkalmazni

e id66szakadék csokkentése: kis kddrészletek utan gyors kiprébalas

e személyi szakadék csokkentése: a fejleszté maga késziti Cl szkripteket és inditja a
tesztrendszeren

e eszk0z szakadék csokkentése: hasznaljuk ugyanazokat az eszkdzoket, ha lehetséges

(Vagrant, Ansible, Docker)
11. Logok kezelése

A logokra ugy tekintslink, mint esemény folyamokra.

A logok mutatjak meg a futd alkalmazasaink viselkedését. Ezek szerver alapu kdrnyezetekben 'log
fajlokban' tarolddnak. A logok valdjaban egy idérendben megjelend kimeneti stream-ek amelyeket a
futd és a hattérfolyamatok generdlnak. A logok nyers szovegeket tartalmaznak, altaldban egy sor
jelent egy eseményt. (a kivételek sokszor a verem informaciék miatt tébb sorosak is lehetnek).

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://www.theforeman.org/
http://upstart.ubuntu.com/
https://www.vagrantup.com/
https://www.ansible.com/
https://www.docker.com/

Last
update:
2022/04/27
19:35

tanszek:oktatas:informatikai_rendszerek_epitese:tizenket_faktor https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:tizenket_faktor

Logoknak nincsenek jdl definialt kezdetiik és véguk.

Fejlesztéskor a log Gizeneteket érdemes a standard outputra irni, hogy kozvetlenil lassuk az esetleges
hibakat. A production kérnyezetben a futtatd kdrnyezet 6sszegydjti a logokat egy kdzponti taroléba,
archivalas céljabdl.

* Log routereket érdemes hasznalni: Logplex, Fluent
 vannak indexelt log feldolgozdk is (Splunk, Hadoop/Hive)

Elényok:

* specifikus események keresése a multban

e trendek grafikus abrazolasa

* alertek definidlasa felhasznaldi heurisztikdk alapjan (alert - ha a hibak mennyisége percenként
elér egy hatarértéket)

12. Admin folyamatok

Az admin folyamatok egyszeriek

 adatbazis migracid (a modell valtozasai miatti adatbazis valtozasok automatikus kdvetése)

» futtatasi konzol (a futé folyamatban ezzel kézi konfiguraciés modositasokat lehet végezni)

 egyszeri szkriptek commitalas a repoba - deploykor az admin folyamatok automatikusan
elfutnak

Admin folyamatok forraskédjat commitalni kell a repositoryba, altaldban egy specialis helyre. Sokszor
elnevezésiik szabalyhoz kétott: pl. 0012 _db_migration.sq|

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:

[g - L Te oy TE =D]

Last update: 2022/04/27 19:35

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/02 21:59

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:informatikai_rendszerek_epitese:tizenket_faktor

	[1. Kódbázis]
	[1. Kódbázis]
	1. Kódbázis
	Code repository
	Alkalmazás vs. elosztott rendszer
	Deployment
	Developer -> Staging -> Production

	2. Függőségek
	Packaging system
	Dependency declaration manifest (függőség deklarációs jegyzék)

	3. Konfiguráció
	4. Szolgáltatások
	5. Build, Release, Run
	6. Futó folyamatok
	7. Port binding
	8. Konkurencia
	9. Eldobhatóság
	10. Development/production hasonlóság fenntartása
	11. Logok kezelése
	12. Admin folyamatok

