
2026/02/17 17:42 1/5 Docker Virtualization in practice

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Docker Virtualization in practice

In the following, we will see how the popular Docker virtualization/containers can be used in practice.

Please log in at http://docker.iit.uni-miskolc.hu/ . Then click the green start button.

After pressing the “+ Add new instance” button on the left side, we will see the following screen:

Create a file called app.py by running the following command and press Ctrl+d to finish:

cat>app.py

By pressing the Editor button next to the delete button, a 'file editor' will appear in a new window.
Open the just created app.py.

Copy the following Python code into the editor:

import time

import redis
from flask import Flask

app = Flask(__name__)
cache = redis.Redis(host='redis', port=6379)

def get_hit_count():
 retries = 5
 while True:

http://docker.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:1.png?id=tanszek%3Aoktatas%3Aiss_t%3Adocker
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:2.png?id=tanszek%3Aoktatas%3Aiss_t%3Adocker

Last update: 2023/04/02 16:56 tanszek:oktatas:iss_t:docker https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:docker?rev=1680454606

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/17 17:42

 try:
 return cache.incr('hits')
 except redis.exceptions.ConnectionError as exc:
 if retries == 0:
 raise exc
 retries -= 1
 time.sleep(0.5)

@app.route('/')
def hello():
 count = get_hit_count()
 return 'Hello World! I have been seen {} times.\n'.format(count)

This Python program demonstrates one of the simplest web server/frameworks called Flask. The code
snippet above implements a counter that counts visitors using the cache system called redis.

Let's create a file called requirements.txt in the same way, as before:

cat>requirements.txt

Then, using the editor, copy the following lines:

flask
redis

This lines define the dependencies of our application. In our case, these are the flask framework and
the redis cache. This is because the virtual machine will start with an empty configuration and we will
use the requirements.txt file to install the dependencies. That is, we do not install anything manually,
only in a standard way.

Creating a **Dockerfile**

Let's create a file called Dockerfile with the following content as usual:

FROM python:3.7-alpine
WORKDIR /code
ENV FLASK_APP=app.py
ENV FLASK_RUN_HOST=0.0.0.0
RUN apk add --no-cache gcc musl-dev linux-headers
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
EXPOSE 5000
COPY . .
CMD ["flask", "run"]

We need to stop here for a little explanation. The Dockerfile's job is to define the step-by-step process
of creating a virtual machine.

We define the following line by line:

2026/02/17 17:42 3/5 Docker Virtualization in practice

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Create a starting virtual machine (image) with python 3.7 support and a linux kernel called
alpine.
our working directory will be /code.
Let's set two environment variables that flask needs to serve.
Install gcc and other dependencies. (this is necessary because Python compiles many packages
from c/c++ source files)
copy requirements.txt into the working directory (this is necessary because the virtual machine
has its own file system, it cannot read the files next to the Dockerfile directly.)
EXPOSE command opens a tcp port to the outside (in this case, 5000)
copy everything to the working directory

the last line defines the startup command after installation, in this case: “flask run”

Soronként a következőket definiáljuk:

Hozzon létre egy kiinduló virtuális gépet (image) a python 3.7-es támogatással és a alpine
nevű linux kernellel.
a munkakönyvtárunk a /code lesz.
Állítsunk be két környezeti változót, ami a flask-nak szükséges a kiszolgáláshoz.
Telepítsük a gcc-t és más függőségeket. (ez azért kell, mert a Python sok csomagot c/c++
forrás állományokból fordít)
másoljuk be a requirements.txt-t a munkakönyvtárba (ez azért kell, mert a virtuális gépnek
saját fájlrendszere van, a Dockerfile mellett lévő állományokat nem tudja közvetlenül olvasni.)
EXPOSE parancs tcp portot nyit meg kifelé (jelen esetben az 5000-est)
mindent másoljuk be a munkakönyvtárba
az utolsó sor a telepítés utáni indító parancsot definiálja, jelen esetben: “flask run”

Compose állomány létrehozása

Más leírásokban ennél a pontnál elindítják a virtuális gépet. Mi nem tesszük meg, hanem
továbblépünk a docker-compose lehetőségeire, amivel rugalmasan tudunk több virtuális gépet
egyszerre kezelni. Nem feltétlenül kell Dockerfile-t sem létrehozni, ha Interneten is elérhető
szabványos konfigurációkat használunk.

Hozzuk létre a docker-compose.yml állományt a szokásos módon:

version: "3.3"
services:
 web:
 build: .
 ports:
 - "80:5000"
 redis:
 image: "redis:alpine"

Ez az állomány szolgáltatásokban gondolkodik. Minden service egy különálló docker image, viszont a
nevükre hivatkozva belsőleg elérik egymást. A fenti konfiguráció web elnevezésű szolgáltatását a
build: . miatt a Dockerfile alapján hozzuk létre, viszont a másik redis szolgáltatást a szabványos
“redis:alpine” konfiguráció alapján használjuk.

Last update: 2023/04/02 16:56 tanszek:oktatas:iss_t:docker https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:docker?rev=1680454606

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/17 17:42

A web esetén a belsőleg kinyitott 5000-es portot láthatóvá tesszük a 80-as port-on.

Indítsuk el a következő parancsot és várjuk meg ameddig lefut:

docker-compose up

A következő képernyőhöz hasonlót kell látnunk, ha mindent jól állítottunk be előzőleg. Nyomjuk meg a
nyíllal jelölt gombot.

Fejlesztési lehetőségek

Frissítsük többször a böngészőt, láthatjuk, hogy a látogatásszám dinamikusan frissül.

Ctrl + c segítségével megállíthatjuk a futtatást.

cseréljük le a docker-compose.yml tartalmát a következőre:

version: "3.3"
services:
 web:
 build: .
 ports:
 - "5000:5000"
 volumes:
 - .:/code
 environment:
 FLASK_ENV: development
 redis:
 image: "redis:alpine"

A volumes beállítja, hogy a virtuális gépben belül levő könyvtár, jelen esetben a working directory a
gazda rendszerhez legyen kötve, illetve kimásolva. Ha nem a gyökérbe szeretnénk mappelni, akkor
pl: ./mycode:/code is megadható, de a mycode könyvtárnak az indítás előtt léteznie kell.

Indítsuk el újra a rendszert:

docker-compose up

Majd látható, hogy a konzolban developer módra kapcsoltunk. Módosítsuk az editor segítségével a

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:3.png?id=tanszek%3Aoktatas%3Aiss_t%3Adocker

2026/02/17 17:42 5/5 Docker Virtualization in practice

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

app.py-t, mondjuk az utolsó függvényben a kiírás szövegét és frissítsük a böngészőt.

Docker compose parancsok

Futó virtuális gépek listázása:

docker-compose ps

Egy adott instance milyen környezeti változókat használ?

docker-compose run web env

Hogyan állíthatjuk le a szolgáltatásokat?

docker-compose stop

Hogyan tudunk teljesen letörölni mindent leállítás után?

docker-compose down --volumes

Hogyan tudunk shellbe belépni egy konténeren belül?

docker-compose exec <containername> sh

Honnan tudok előre elkészített minta container-eket letölteni?

https://github.com/docker/awesome-compose

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of
Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:docker?rev=1680454606

Last update: 2023/04/02 16:56

https://github.com/docker/awesome-compose
https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:docker?rev=1680454606

	[Docker Virtualization in practice]
	[Docker Virtualization in practice]
	Docker Virtualization in practice
	Creating a **Dockerfile**
	Compose állomány létrehozása
	Fejlesztési lehetőségek
	Docker compose parancsok

