2026/02/17 17:42 1/5 Docker Virtualization in practice

Docker Virtualization in practice

In the following, we will see how the popular Docker virtualization/containers can be used in practice.
Please log in at http://docker.iit.uni-miskolc.hu/ . Then click the green start button.

After pressing the “+ Add new instance” button on the left side, we will see the following screen:

cOvuny3e_cOvuoZIe? 5e000f 1120

T L LT LT I T LTI T T
¥ TP

Create a file called app.py by running the following command and press Ctrl+d to finish:

cat>app.py

By pressing the Editor button next to the delete button, a 'file editor' will appear in a new window.
Open the just created app.py.

==

Copy the following Python code into the editor:
time

redis
flask Flask

app = Flask(_ name
cache redis.Redis(host="'redis', port

get hit count
retries
True:

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

http://docker.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:1.png?id=tanszek%3Aoktatas%3Aiss_t%3Adocker
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:2.png?id=tanszek%3Aoktatas%3Aiss_t%3Adocker

Last update: 2023/04/02 16:56 tanszek:oktatas:iss_t:docker https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:docker?rev=1680454606

cache.incr('hits'
redis.exceptions.ConnectionError exc:
retries
exc
retries -
time.sleep

app.route('/"
hello
count = get hit count
'Hello World! I have been seen {} times.\n'.format(count

This Python program demonstrates one of the simplest web server/frameworks called Flask. The code
snippet above implements a counter that counts visitors using the cache system called redis.

Let's create a file called requirements.txt in the same way, as before:
cat>requirements.txt
Then, using the editor, copy the following lines:

flask
redis

This lines define the dependencies of our application. In our case, these are the flask framework and
the redis cache. This is because the virtual machine will start with an empty configuration and we will
use the requirements.txt file to install the dependencies. That is, we do not install anything manually,
only in a standard way.

Creating a **Dockerfile**

Let's create a file called Dockerfile with the following content as usual:

FROM python:3.7-alpine

WORKDIR /code

ENV FLASK APP=app.py

ENV FLASK RUN HOST=0.0.0.0

RUN apk add --no-cache gcc musl-dev linux-headers
COPY requirements.txt requirements.txt

RUN pip install -r requirements.txt

EXPOSE 5000

COPY .

CMD ["flask", "run"]

We need to stop here for a little explanation. The Dockerfile's job is to define the step-by-step process
of creating a virtual machine.

We define the following line by line:

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/17 17:42

2026/02/17 17:42 3/5 Docker Virtualization in practice

 Create a starting virtual machine (image) with python 3.7 support and a linux kernel called
alpine.

e our working directory will be /code.

* Let's set two environment variables that flask needs to serve.

e Install gcc and other dependencies. (this is necessary because Python compiles many packages
from c/c++ source files)

e copy requirements.txt into the working directory (this is necessary because the virtual machine
has its own file system, it cannot read the files next to the Dockerfile directly.)

e EXPOSE command opens a tcp port to the outside (in this case, 5000)

e copy everything to the working directory

the last line defines the startup command after installation, in this case: “flask run”
Soronként a kdvetkezdket definialjuk:

* Hozzon létre egy kiinduld virtudlis gépet (image) a python 3.7-es tdmogatassal és a alpine
nev(linux kernellel.

e a munkakonyvtarunk a /code lesz.

o Allitsunk be két kdrnyezeti valtozét, ami a flask-nak sziikséges a kiszolgalashoz.

* Telepitsiik a gcc-t és mas fliggdségeket. (ez azért kell, mert a Python sok csomagot c/c++
forras allomanyokbdl fordit)

* masoljuk be a requirements.txt-t a munkakdnyvtarba (ez azért kell, mert a virtudlis gépnek
sajat fajlrendszere van, a Dockerfile mellett Iévd dllomanyokat nem tudja kdzvetlendl olvasni.)

e EXPOSE parancs tcp portot nyit meg kifelé (jelen esetben az 5000-est)

e mindent masoljuk be a munkakdnyvtarba

 az utolsé sor a telepités utani inditdé parancsot definialja, jelen esetben: “flask run”

Compose allomany létrehozasa

Mas leirasokban ennél a pontnal elinditjak a virtualis gépet. Mi nem tesszik meg, hanem
tovabbléplink a docker-compose lehet6ségeire, amivel rugalmasan tudunk tobb virtualis gépet
egyszerre kezelni. Nem feltétlen(l kell Dockerfile-t sem Iétrehozni, ha Interneten is elérhetd
szabvanyos konfiguraciékat haszndlunk.

Hozzuk |étre a docker-compose.yml allomanyt a szokasos modon:

version: "3.3"
services:
web:
build:
ports:
"80:5000"
redis:
image: "redis:alpine"

Ez az dllomany szolgaltatasokban gondolkodik. Minden service egy kiilénallé docker image, viszont a
nevikre hivatkozva belséleg elérik egymast. A fenti konfiguracié web elnevezésl szolgaltatasat a
build: . miatt a Dockerfile alapjan hozzuk Iétre, viszont a masik redis szolgaltatast a szabvanyos
“redis:alpine” konfiguracié alapjan hasznaljuk.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last update: 2023/04/02 16:56 tanszek:oktatas:iss_t:docker https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:docker?rev=1680454606

A web esetén a belséleg kinyitott 5000-es portot lathatéva tesszik a 80-as port-on.

Inditsuk el a kdvetkezd parancsot és varjuk meg ameddig lefut:

docker-compose up

A kovetkezd képernyéhodz hasonlét kell 1atnunk, ha mindent jél allitottunk be el6zéleg. Nyomjuk meg a
nyillal jelélt gombot.

Fejlesztési lehetoségek

Frissitsiik tdbbszor a bongész6t, lathatjuk, hogy a latogatasszam dinamikusan frissil.
Ctrl + c segitségével megallithatjuk a futtatast.

cseréljik le a docker-compose.yml tartalmat a kdvetkezdre:

version: "3.3"
services:
web:
build:
ports:
"5000:5000"
volumes:
- .:/code
environment:
FLASK ENV: development
redis:
image: "redis:alpine"

A volumes bedllitja, hogy a virtudlis gépben belll levé konyvtar, jelen esetben a working directory a
gazda rendszerhez legyen kotve, illetve kimasolva. Ha nem a gydkérbe szeretnénk mappelni, akkor
pl: ./mycode:/code is megadhatd, de a mycode kdnyvtarnak az inditas el6tt l1éteznie kell.

Inditsuk el Gjra a rendszert:
docker-compose up

Majd lathato, hogy a konzolban developer mdédra kapcsoltunk. Médositsuk az editor segitségével a

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/17 17:42

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:3.png?id=tanszek%3Aoktatas%3Aiss_t%3Adocker

2026/02/17 17:42 5/5 Docker Virtualization in practice

app.py-t, mondjuk az utols6 fliggvényben a kiirds szovegét és frissitsik a bongészot.

Docker compose parancsok

Futé virtualis gépek listédzasa:

docker-compose ps

Egy adott instance milyen kérnyezeti valtozdkat hasznal?
docker-compose run web env

Hogyan allithatjuk le a szolgaltatasokat?
docker-compose stop

Hogyan tudunk teljesen letéréini mindent leallitas utan?
docker-compose down --volumes

Hogyan tudunk shellbe belépni egy konténeren belil?
docker-compose exec <containername> sh

Honnan tudok elére elkészitett minta container-eket letolteni?

https://github.com/docker/awesome-compose

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of
Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:docker?rev=1680454606

Last update: 2023/04/02 16:56

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://github.com/docker/awesome-compose
https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:docker?rev=1680454606

	[Docker Virtualization in practice]
	[Docker Virtualization in practice]
	Docker Virtualization in practice
	Creating a **Dockerfile**
	Compose állomány létrehozása
	Fejlesztési lehetőségek
	Docker compose parancsok

