2025/11/04 20:09 1/5 Docker Virtualization in practice

Docker Virtualization in practice

In the following, we will see how the popular Docker virtualization/containers can be used in practice.
Please log in at http://docker.iit.uni-miskolc.hu/ . Then click the green start button.

After pressing the “+ Add new instance” button on the left side, we will see the following screen:

cOvuny3e_cOvuoZIe? 5e000f 1120

T L LT LT I T LTI T T
¥ TP

Create a file called app.py by running the following command and press Ctrl+d to finish:

cat>app.py

By pressing the Editor button next to the delete button, a 'file editor' will appear in a new window.
Open the just created app.py.

==

Copy the following Python code into the editor:
time

redis
flask Flask

app = Flask(_ name
cache redis.Redis(host="'redis', port

get hit count
retries
True:

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

http://docker.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:1.png?id=tanszek%3Aoktatas%3Aiss_t%3Adocker
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:2.png?id=tanszek%3Aoktatas%3Aiss_t%3Adocker

Last update: 2023/04/16 18:38 tanszek:oktatas:iss_t:docker https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:docker?rev=1681670301

cache.incr('hits'
redis.exceptions.ConnectionError exc:
retries
exc
retries -
time.sleep

app.route('/"
hello
count = get hit count
'Hello World! I have been seen {} times.\n'.format(count

This Python program demonstrates one of the simplest web server/frameworks called Flask. The code
snippet above implements a counter that counts visitors using the cache system called redis.

Let's create a file called requirements.txt in the same way, as before:
cat>requirements.txt
Then, using the editor, copy the following lines:

flask
redis

This lines define the dependencies of our application. In our case, these are the flask framework and
the redis cache. This is because the virtual machine will start with an empty configuration and we will
use the requirements.txt file to install the dependencies. That is, we do not install anything manually,
only in a standard way.

Creating a **Dockerfile**

Let's create a file called Dockerfile with the following content as usual:

FROM python:3.7-alpine

WORKDIR /code

ENV FLASK APP=app.py

ENV FLASK RUN HOST=0.0.0.0

RUN apk add --no-cache gcc musl-dev linux-headers
COPY requirements.txt requirements.txt

RUN pip install -r requirements.txt

EXPOSE 5000

COPY .

CMD ["flask", "run"]

We need to stop here for a little explanation. The Dockerfile's job is to define the step-by-step process
of creating a virtual machine.

We define the following line by line:

https://edu.iit.uni-miskolc.hu/ Printed on 2025/11/04 20:09

2025/11/04 20:09 3/5 Docker Virtualization in practice

 Create a starting virtual machine (image) with python 3.7 support and a linux kernel called
alpine.

e our working directory will be /code.

* Let's set two environment variables that flask needs to serve.

e Install gcc and other dependencies. (this is necessary because Python compiles many packages
from c/c++ source files)

e copy requirements.txt into the working directory (this is necessary because the virtual machine
has its own file system, it cannot read the files next to the Dockerfile directly.)

e EXPOSE command opens a tcp port to the outside (in this case, 5000)

e copy everything to the working directory

the last line defines the startup command after installation, in this case: “flask run”

Creating a docker-compose file to manage lifecycle

In other tutorials, the virtual machine is started at this point. We don't do it, but move on to the
possibilities of docker-compose.yml, which allows us to flexibly manage several virtual machines at
the same time. It is not necessary to create a Dockerfile either, if we use standard configurations
available on the Internet.

Create the docker-compose.yml file as usual:

version: "3.3"
services:
web:
build:
ports:
"80:5000"
redis:
image: "redis:alpine"

Each service is a separate docker image, but they reach each other internally by referring to their
names. The service named web in the above configuration is provided by build: . because of this, we
create it based on the Dockerfile, but we use the other redis service based on the standard
“redis:alpine” configuration.

In the case of the web, the internally opened port 5000 is made visible on port 80.

Let's start the following command and wait until it runs:
docker-compose up

We should see something similar to the next screen, if everything was set up correctly previously.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last update: 2023/04/16 18:38 tanszek:oktatas:iss_t:docker https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:docker?rev=1681670301

Possibilities for development

Refresh the browser several times, we can see that the number of visits is updated dynamically.
Ctrl + c can be used to stop the execution.

replace the contents of docker-compose.yml with the following:

version: "3.3"
services:
web:
build:
ports:
"5000:5000"
volumes:
- .:/code
environment:
FLASK ENV: development
redis:
image: "redis:alpine"

volumes sets the directory inside the virtual machine, in this case the working directory ./ is
connected to the host system. (it means, all the file changes will shared between the host and

container.) If you don't want to map to the root, you can enter e.g.: ./mycode:/code, but the mycode
directory must exist before starting.

Let's restart the system:
docker-compose up

Then you can see that we switched to developer mode in the console. Use the editor to modify
app.py, say the text of the statement in the last function, and update the browser.

Docker compose commands

List running virtual machines::

https://edu.iit.uni-miskolc.hu/ Printed on 2025/11/04 20:09

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informatikai_rendszerek_epitese:3.png?id=tanszek%3Aoktatas%3Aiss_t%3Adocker

2025/11/04 20:09 5/5

Docker Virtualization in practice

docker-compose ps

What environment variables does a given instance use?
docker-compose run web env

How can we stop the services?

docker-compose stop <service-name>

How can we completely wipe everything after shutdown?
docker-compose down --volumes

How can we enter a shell inside a container?
docker-compose exec <containername> sh
How can | see the logs?

docker-compose logs <containername>

Where can | download pre-made sample containers?

https://github.com/docker/awesome-compose

Source code can be found here: https://github.com/knehez/isi in folder example_1.

From:

https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of

Miskolc

Permanent link:

https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:docker?rev=1681670301

Last update: 2023/04/16 18:38

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://github.com/docker/awesome-compose
https://github.com/knehez/isi
https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:docker?rev=1681670301

	[Docker Virtualization in practice]
	[Docker Virtualization in practice]
	Docker Virtualization in practice
	Creating a **Dockerfile**
	Creating a docker-compose file to manage lifecycle
	Possibilities for development
	Docker compose commands

