
2026/02/16 00:14 1/5 'My own HTTP' server sample

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

'My own HTTP' server sample

Let's create an empty Java project, Then create files called 404.html and an index.html with the
following content. Let's note that the error handling is redundant, i.e. the handling of errors 404 and
501 is written twice.

Task: create a generic error handling function to return errors to the client side.

Content of 404.html:

 <html>
 <body>
 <h1>File not found error</h1>
 </body>
 </html>

Content of index.html:

 <html>
 <body>
 <h1>My HTTP server works</h1>
 Link not working
 </body>
 </html>

Content of JavaHTTPServer.java:

import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.Date;
import java.util.StringTokenizer;

public class JavaHTTPServer implements Runnable {

 static final File WEB_ROOT = new File(".");
 static final String DEFAULT_FILE = "index.html";

Last update: 2024/03/04
08:09 tanszek:oktatas:iss_t:http_server https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:http_server?rev=1709539746

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 00:14

 static final String FILE_NOT_FOUND = "404.html";

 private Socket connect;

 public JavaHTTPServer(Socket c) {
 connect = c;
 }

 public static void main(String[] args) {
 try {
 ServerSocket serverConnect = new ServerSocket(8080);
 System.out.println("Server started.\nListening for connections
on port : 8080 ...\n");

 while (true) {
 JavaHTTPServer myServer = new
JavaHTTPServer(serverConnect.accept());

 Thread thread = new Thread(myServer);
 thread.start();
 }
 } catch (IOException e) {
 System.err.println("Server Connection error : " +
e.getMessage());
 }
 }

 @Override
 public void run() {
 BufferedReader in = null;
 PrintWriter out = null;
 BufferedOutputStream dataOut = null;
 String fileRequested = null;

 try {
 in = new BufferedReader(new
InputStreamReader(connect.getInputStream()));
 out = new PrintWriter(connect.getOutputStream());
 dataOut = new BufferedOutputStream(connect.getOutputStream());

 String input = in.readLine();

 StringTokenizer parse = new StringTokenizer(input);
 String method = parse.nextToken().toUpperCase(); // we get the
HTTP method of the client
 // we get file requested
 fileRequested = parse.nextToken().toLowerCase();

 // we support only GET and HEAD methods, we check
 if (method.equals("GET") || method.equals("HEAD")) {

2026/02/16 00:14 3/5 'My own HTTP' server sample

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 // GET or HEAD method
 if (fileRequested.endsWith("/")) {
 fileRequested += DEFAULT_FILE;
 }

 File file = new File(WEB_ROOT, fileRequested);
 int fileLength = (int) file.length();
 String content = getContentType(fileRequested);

 if (method.equals("GET")) { // GET method so we return
content
 byte[] fileData = readFileData(file, fileLength);

 // send HTTP Headers
 out.println("HTTP/1.1 200 OK");
 out.println("Server: Java HTTP Server v1.0");
 out.println("Date: " + new Date());
 out.println("Content-type: " + content);
 out.println("Content-length: " + fileLength);
 out.println(); // blank line between headers and
content, very important !
 out.flush(); // flush character output stream buffer

 dataOut.write(fileData, 0, fileLength);
 dataOut.flush();
 }
 }

 } catch (FileNotFoundException fnfe) {
 try {
 fileNotFound(out, dataOut, fileRequested);
 } catch (IOException ioe) {
 System.err.println("Error with file not found exception : "
+ ioe.getMessage());
 }

 } catch (IOException ioe) {
 System.err.println("Server error : " + ioe);
 } finally {
 try {
 in.close();
 out.close();
 dataOut.close();
 connect.close(); // we close socket connection
 } catch (Exception e) {
 System.err.println("Error closing stream : " +
e.getMessage());
 }
 }

 }

Last update: 2024/03/04
08:09 tanszek:oktatas:iss_t:http_server https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:http_server?rev=1709539746

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 00:14

 private byte[] readFileData(File file, int fileLength) throws
IOException {
 FileInputStream fileIn = null;
 byte[] fileData = new byte[fileLength];

 try {
 fileIn = new FileInputStream(file);
 fileIn.read(fileData);
 } finally {
 if (fileIn != null)
 fileIn.close();
 }

 return fileData;
 }

 // return supported MIME Types
 private String getContentType(String fileRequested) {
 if (fileRequested.endsWith(".htm") ||
fileRequested.endsWith(".html"))
 return "text/html";
 else
 return "text/plain";
 }

 private void fileNotFound(PrintWriter out, OutputStream dataOut, String
fileRequested) throws IOException {
 File file = new File(WEB_ROOT, FILE_NOT_FOUND);
 int fileLength = (int) file.length();
 String content = "text/html";
 byte[] fileData = readFileData(file, fileLength);

 out.println("HTTP/1.1 404 File Not Found");
 out.println("Server: Java HTTP Server v1.0");
 out.println("Date: " + new Date());
 out.println("Content-type: " + content);
 out.println("Content-length: " + fileLength);
 out.println(); // blank line between headers and content, very
important !
 out.flush(); // flush character output stream buffer

 dataOut.write(fileData, 0, fileLength);
 dataOut.flush();
 }

}

Task: refactor the code and eliminate duplicate parts. Let's create a separate function to return the
general HTTP response::

2026/02/16 00:14 5/5 'My own HTTP' server sample

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

out.println("HTTP/1.1 200 OK");
out.println("Server: Java HTTP Server v1.0");
out.println("Date: " + new Date());
out.println("Content-type: " + content);
out.println("Content-length: " + fileLength);
out.println(); // blank line between headers and content, very important !
out.flush(); // flush character output stream buffer

Task: modify the source code so that it can also return images. To do this, first add to
index.html and copy an arbitrary image next to the html-s..

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of
Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:http_server?rev=1709539746

Last update: 2024/03/04 08:09

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+date
https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:http_server?rev=1709539746

	['My own HTTP' server sample]
	['My own HTTP' server sample]
	'My own HTTP' server sample

