
2026/02/17 09:54 1/3 TCP - Socket communication

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

TCP - Socket communication

The client sends requests to the server over a TCP socket connection, and the server responds to
these requests. Here are the basic steps involved in integrating software systems or components
using TCP socket communication:

Select a protocol: TCP/IP is a common protocol for socket communication, but other protocols1.
like UDP can also be used depending on the requirements.
Determine the message format: Decide on the format of the messages that will be2.
exchanged between the client and server. This could be a simple text-based format or a more
complex binary format.
Define the communication interface: Define the functions or APIs that will be used for3.
communication between the client and server.
Create the server: Write the code for the server that listens for incoming client connections4.
and handles incoming requests.
Create the client: Write the code for the client that connects to the server and sends5.
requests.
Handle errors: Implement error handling mechanisms to ensure that communication errors6.
are handled gracefully and do not cause the system to crash or become unstable.
Test and iterate: Test the system thoroughly and make any necessary changes or7.
improvements to ensure that it is functioning correctly.

Features:

Socket ::= IP address + (TCP/UPD) port number. A Socket is a combination of ip address and
port number.
TCP Sockets provides 'real-time' data transfer

binary data transfer but can be normal text or JSON, XML as well
no direct method sharing (can be implemented by hand)
TCP and UDP connections are possible. UDP is min 3 times quicker but one-way
communication

Persistent or On-Demand communication channel
because of connection time-loss usually persistent channels are better, but periodically
'ping' messages should be sent. (in order to avoid connection closing). In case of any
problems reconnection is possible
in case of UDP channels an extra TCP channel is available for synchronizing - in online
games

Results in the fastest possible transmission:
Where the number of transactions per second up to ~ 50 transactions, there should have
been applied. (20ms / sec transfer)

Blocking and non-blocking TCP sockets in Java

Last
update:
2024/02/25
15:42

tanszek:oktatas:iss_t:integration_based_on_tcp_ip_sockets https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:integration_based_on_tcp_ip_sockets?rev=1708875747

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/17 09:54

Blocking and non-blocking TCP sockets differ mainly in handling input/output (I/O) operations,
particularly regarding how a program's execution flow is managed when waiting for operations to
complete. Here's a breakdown of the main differences:

Blocking sockets

Execution Flow: In the case of blocking sockets, when a socket operation (like recv or send) is
called, the program's execution is “blocked” until the operation completes. For example, if you call
recv to read data from a socket, the call will wait forever until data is received.

Ease of Use: Blocking sockets are straightforward to use and understand because the operations
appear sequential and synchronous. The program will not proceed until the current operation finishes,
simplifying the logic, especially for simple networked applications.

Performance Considerations: While blocking sockets are easier to work with, they can lead to
inefficient use of resources. For instance, if a server implemented with blocking sockets handles
multiple connections, it would need to spawn a new thread or process for each connection to avoid
one operation blocking the entire server.

Non-Blocking sockets

Execution Flow: Non-blocking sockets, on the other hand, allow the program's execution to continue
immediately, even if the socket operation cannot be completed at that moment.

Complexity: Because the program continues to run even when data is not immediately available,
using non-blocking sockets can lead to more complex program structures. Developers often use event
loops or select/poll mechanisms to efficiently manage these sockets, especially when handling
multiple connections simultaneously.

Performance and Scalability: Non-blocking sockets can lead to more efficient and scalable
applications. A single process or thread can manage multiple socket connections without spawning
new threads or processes for each connection, using system resources better and enabling the server
to handle many connections concurrently.

Reading:

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:iss_t:sockets-blocking-nonblocking.png?id=tanszek%3Aoktatas%3Aiss_t%3Aintegration_based_on_tcp_ip_sockets

2026/02/17 09:54 3/3 TCP - Socket communication

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

http://tutorials.jenkov.com/java-nio/nio-vs-io.html
http://www.javaworld.com/article/2073344/core-java/use-select-for-high-speed-networking.html

Non-blocking loop

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.socket().bind(new InetSocketAddress(9999));
 serverSocketChannel.configureBlocking(false); // non blocking enabled

 while(true){
 SocketChannel socketChannel = serverSocketChannel.accept();

 if(socketChannel != null){
 // the connection is accepted
 }
 }

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:integration_based_on_tcp_ip_sockets?rev=1708875747

Last update: 2024/02/25 15:42

http://tutorials.jenkov.com/java-nio/nio-vs-io.html
http://www.javaworld.com/article/2073344/core-java/use-select-for-high-speed-networking.html
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informacios_rendszerek_integralasa:high_speed_socket.jpg?id=tanszek%3Aoktatas%3Aiss_t%3Aintegration_based_on_tcp_ip_sockets
https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:integration_based_on_tcp_ip_sockets?rev=1708875747

	[TCP - Socket communication]
	TCP - Socket communication
	Blocking and non-blocking TCP sockets in Java
	Blocking sockets
	Non-Blocking sockets

	Non-blocking loop

