
2026/02/15 21:34 1/10 Blocking TCP sockets in Java

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Blocking TCP sockets in Java

Blocking Socket server source code

 package org.ait;
 import java.io.IOException;
 import java.io.ObjectInputStream;
 import java.io.ObjectOutputStream;
 import java.net.ServerSocket;
 import java.net.Socket;
 public class Server {
 ServerSocket providerSocket;
 Socket connection = null;
 ObjectOutputStream out;
 ObjectInputStream in;
 String message;
 Server() {
 }
 void run() {
 try {
 // 1. create a socket server listening to port 8080
 providerSocket = new ServerSocket(8080);
 // 2. waiting for the connection (here we are waiting until
next connection)
 connection = providerSocket.accept();
 // 3. create Input and Output streams
 out = new ObjectOutputStream(connection.getOutputStream());
 in = new ObjectInputStream(connection.getInputStream());
 // 4. socket communication
 do {
 try {
 message = (String) in.readObject();
 System.out.println("client>" + message);
 if (message.equals("bye")) {
 sendMessage("bye");
 }
 } catch (ClassNotFoundException classnot) {
 System.err.println("Data received in unknown
format");
 }
 } while (!message.equals("bye"));
 } catch (IOException ioException) {
 ioException.printStackTrace();
 } finally {
 // 4: close connection
 try {
 in.close();
 out.close();

Last
update:
2024/03/04
07:56

tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/15 21:34

 providerSocket.close();
 } catch (IOException ioException) {
 ioException.printStackTrace();
 }
 }
 }
 void sendMessage(String msg) {
 try {
 out.writeObject(msg);
 out.flush();
 System.out.println("server>" + msg);
 } catch (IOException ioException) {
 ioException.printStackTrace();
 }
 }
 public static void main(String args[]) {
 Server server = new Server();
 while (true) {
 server.run();
 }
 }
 }

Blocking Socket client source

 package org.ait;
 import java.io.IOException;
 import java.io.ObjectInputStream;
 import java.io.ObjectOutputStream;
 import java.net.Socket;
 import java.net.UnknownHostException;
 public class Client {
 Socket requestSocket;
 ObjectOutputStream out;
 ObjectInputStream in;
 String message;
 Client() {
 }
 void run() {
 try {
 // 1. try to connect to the socket: localhost:8080
 requestSocket = new Socket("localhost", 8080);
 // 2. Input and Output streams
 out = new
ObjectOutputStream(requestSocket.getOutputStream());
 in = new ObjectInputStream(requestSocket.getInputStream());
 // 3: communications

2026/02/15 21:34 3/10 Blocking TCP sockets in Java

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 do {
 try {
 sendMessage("Hello server");
 sendMessage("bye");
 message = (String) in.readObject();
 } catch (Exception e) {
 System.err.println("data received in unknown
format");
 }
 } while (!message.equals("bye"));
 } catch (UnknownHostException unknownHost) {
 System.err.println("You are trying to connect to an unknown
host!");
 } catch (IOException ioException) {
 ioException.printStackTrace();
 } finally {
 // 4: close connection
 try {
 in.close();
 out.close();
 requestSocket.close();
 } catch (IOException ioException) {
 ioException.printStackTrace();
 }
 }
 }
 void sendMessage(String msg) {
 try {
 out.writeObject(msg);
 out.flush();
 System.out.println("client>" + msg);
 } catch (IOException ioException) {
 ioException.printStackTrace();
 }
 }
 public static void main(String args[]) {
 Client client = new Client();
 client.run();
 }
 }

Blocking UDP sockets in Java

The following Agent sends a message and waits for a response on port 8080, also with UDP. Older
versions of the Eclipse IDE, the text you type on the console can be sent by pressing ctrl+z

 package org.ait;
 import java.io.BufferedReader;

Last
update:
2024/03/04
07:56

tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/15 21:34

 import java.io.InputStreamReader;
 import java.net.DatagramPacket;
 import java.net.DatagramSocket;
 import java.net.InetAddress;
 public class UDPClient {
 public static void main(String args[]) throws Exception {
 BufferedReader inFromUser = new BufferedReader(new
InputStreamReader(System.in));
 DatagramSocket clientSocket = new DatagramSocket();
 InetAddress IPAddress = InetAddress.getByName("localhost");
 byte[] sendData = new byte[1024];
 byte[] receiveData = new byte[1024];
 String sentence = inFromUser.readLine();
 sendData = sentence.getBytes();
 DatagramPacket sendPacket = new DatagramPacket(sendData,
sendData.length, IPAddress, 8080);
 clientSocket.send(sendPacket);
 DatagramPacket receivePacket = new DatagramPacket(receiveData,
receiveData.length);
 clientSocket.receive(receivePacket);
 String modifiedSentence = new String(receivePacket.getData());
 System.out.println("converted:" + modifiedSentence);
 clientSocket.close();
 }
 }

The UDP server waits for the agents messages on port 8080 and converts them to uppercase letters
and sends them back to the client UDP socket.

 package org.ait;
 import java.net.DatagramPacket;
 import java.net.DatagramSocket;
 import java.net.InetAddress;
 public class UDPServer {
 public static void main(String args[]) throws Exception {
 DatagramSocket serverSocket = new DatagramSocket(8080);
 byte[] bytesReceived = new byte[1024];
 byte[] bytesSent = new byte[1024];
 DatagramPacket receivePacket = new DatagramPacket(bytesReceived,
bytesReceived.length);
 // here we are waiting for the packets
 serverSocket.receive(receivePacket);
 String textMessage = new String(receivePacket.getData());
 System.out.println("I got: " + textMessage);
 InetAddress IPAddress = receivePacket.getAddress();
 int port = receivePacket.getPort();
 String upperCaseText = textMessage.toUpperCase();
 bytesSent = upperCaseText.getBytes();

2026/02/15 21:34 5/10 Blocking TCP sockets in Java

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 // send back
 DatagramPacket sendPacket = new DatagramPacket(bytesSent,
bytesSent.length, IPAddress, port);
 serverSocket.send(sendPacket);
 serverSocket.close();
 }
 }

Non-blocking TCP sockets in Java

Reading:

http://tutorials.jenkov.com/java-nio/nio-vs-io.html
http://www.javaworld.com/article/2073344/core-java/use-select-for-high-speed-networking.html

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:iss_t:sockets-blocking-nonblocking.png?id=tanszek%3Aoktatas%3Aiss_t%3Ajava_example_for_blocking_and_non-blocking_socket
http://tutorials.jenkov.com/java-nio/nio-vs-io.html
http://www.javaworld.com/article/2073344/core-java/use-select-for-high-speed-networking.html
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informacios_rendszerek_integralasa:high_speed_socket.jpg?id=tanszek%3Aoktatas%3Aiss_t%3Ajava_example_for_blocking_and_non-blocking_socket

Last
update:
2024/03/04
07:56

tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/15 21:34

Non-blocking loop

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
 serverSocketChannel.socket().bind(new InetSocketAddress(9999));
 serverSocketChannel.configureBlocking(false); // ez a sor jelzi a
blokkolásmentes működést
 while(true){
 SocketChannel socketChannel = serverSocketChannel.accept();
 if(socketChannel != null){
 // the connection is accepted
 }
 }

Non-blocking Java client example

 import java.io.IOException;
 import java.io.InputStream;
 import java.io.OutputStream;
 import java.net.Socket;
 import java.util.Random;
 public class Client implements Runnable {
 private String host;
 private int port;
 // Bounds on how much we write per cycle
 private static final int minWriteSize = 1024;
 private static final int maxWriteSize = 65536;
 // Bounds on how long we wait between cycles
 private static final int minPause = (int) (0.05 * 1000);
 private static final int maxPause = (int) (0.5 * 1000);
 // Random number generator
 Random rand = new Random();
 public Client(String host, int port, int numThreads) {
 this.host = host;
 this.port = port;
 for (int i = 0; i < numThreads; ++i) {
 new Thread(this).start();
 }
 }
 public void run() {
 byte buffer[] = new byte[maxWriteSize];
 try {
 Socket s = new Socket(host, port);
 InputStream in = s.getInputStream();

2026/02/15 21:34 7/10 Blocking TCP sockets in Java

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 OutputStream out = s.getOutputStream();
 while (true) {
 int numToWrite = minWriteSize
 + (int) (rand.nextDouble() * (maxWriteSize -
minWriteSize));
 for (int i = 0; i < numToWrite; ++i) {
 buffer[i] = (byte) rand.nextInt(256);
 }
 out.write(buffer, 0, numToWrite);
 int sofar = 0;
 while (sofar < numToWrite) {
 sofar += in.read(buffer, sofar, numToWrite - sofar);
 }
 System.out.println(Thread.currentThread() + " wrote " +
numToWrite);
 int pause = minPause + (int) (rand.nextDouble() * (maxPause
- minPause));
 try {
 Thread.sleep(pause);
 } catch (InterruptedException ie) {
 }
 }
 } catch (IOException ie) {
 ie.printStackTrace();
 }
 }
 static public void main(String args[]) throws Exception {
 new Client("localhost", 4444, 3);
 }
 }

Non-blocking Java server example

 public class Server implements Runnable {
 // The port we will listen on
 private int port;
 // A pre-allocated buffer for encrypting data
 private final ByteBuffer buffer = ByteBuffer.allocate(16384);
 public Server(int port) {
 this.port = port;
 new Thread(this).start();
 }
 public void run() {
 try {
 // Instead of creating a ServerSocket,
 // create a ServerSocketChannel

Last
update:
2024/03/04
07:56

tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/15 21:34

 ServerSocketChannel ssc = ServerSocketChannel.open();
 // Set it to non-blocking, so we can use select
 ssc.configureBlocking(false);
 // Get the Socket connected to this channel, and bind it
 // to the listening port
 ServerSocket ss = ssc.socket();
 InetSocketAddress isa = new InetSocketAddress(port);
 ss.bind(isa);
 // Create a new Selector for selecting
 Selector selector = Selector.open();
 // Register the ServerSocketChannel, so we can
 // listen for incoming connections
 ssc.register(selector, SelectionKey.OP_ACCEPT);
 System.out.println("Listening on port " + port);
 while (true) {
 // See if we've had any activity -- either
 // an incoming connection, or incoming data on an
 // existing connection
 int num = selector.select();
 // If we don't have any activity, loop around and wait
 // again
 if (num == 0) {
 continue;
 }
 // Get the keys corresponding to the activity
 // that has been detected, and process them
 // one by one
 Set keys = selector.selectedKeys();
 Iterator it = keys.iterator();
 while (it.hasNext()) {
 // Get a key representing one of bits of I/O
 // activity
 SelectionKey key = (SelectionKey) it.next();
 // What kind of activity is it?
 if ((key.readyOps() & SelectionKey.OP_ACCEPT) ==
SelectionKey.OP_ACCEPT) {
 System.out.println("acc");
 // It's an incoming connection.
 // Register this socket with the Selector
 // so we can listen for input on it
 Socket s = ss.accept();
 System.out.println("Got connection from " + s);
 // Make sure to make it non-blocking, so we can
 // use a selector on it.
 SocketChannel sc = s.getChannel();
 sc.configureBlocking(false);
 // Register it with the selector, for reading
 sc.register(selector, SelectionKey.OP_READ);
 } else if ((key.readyOps() & SelectionKey.OP_READ) ==
SelectionKey.OP_READ) {

2026/02/15 21:34 9/10 Blocking TCP sockets in Java

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 SocketChannel sc = null;
 try {
 // It's incoming data on a connection, so
 // process it
 sc = (SocketChannel) key.channel();
 boolean ok = processInput(sc);
 // If the connection is dead, then remove it
 // from the selector and close it
 if (!ok) {
 key.cancel();
 Socket s = null;
 try {
 s = sc.socket();
 s.close();
 } catch (IOException ie) {
 System.err.println("Error closing socket
"
 + s + ": " + ie);
 }
 }
 } catch (IOException ie) {
 // On exception, remove this channel from the
 // selector
 key.cancel();
 try {
 sc.close();
 } catch (IOException ie2) {
 System.out.println(ie2);
 }
 System.out.println("Closed " + sc);
 }
 }
 }
 // We remove the selected keys, because we've dealt
 // with them.
 keys.clear();
 }
 } catch (IOException ie) {
 System.err.println(ie);
 }
 }
 // Do some cheesy encryption on the incoming data,
 // and send it back out
 private boolean processInput(SocketChannel sc) throws IOException {
 buffer.clear();
 sc.read(buffer);
 buffer.flip();
 // If no data, close the connection
 if (buffer.limit() == 0) {
 return false;
 }

Last
update:
2024/03/04
07:56

tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/15 21:34

 // Simple rot-13 encryption
 for (int i = 0; i < buffer.limit(); ++i) {
 byte b = buffer.get(i);
 if ((b >= 'a' && b <= 'm') || (b >= 'A' && b <= 'M')) {
 b += 13;
 } else if ((b >= 'n' && b <= 'z') || (b >= 'N' && b <= 'Z')) {
 b -= 13;
 }
 buffer.put(i, b);
 }
 sc.write(buffer);
 System.out.println("Processed " + buffer.limit() + " from " + sc);
 return true;
 }
 static public void main(String args[]) throws Exception {
 new Server(4444);
 }
 }

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

Last update: 2024/03/04 07:56

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

	[Blocking TCP sockets in Java]
	[Blocking TCP sockets in Java]
	Blocking TCP sockets in Java
	Blocking Socket server source code
	Blocking Socket client source

	Blocking UDP sockets in Java
	Non-blocking TCP sockets in Java

	Non-blocking loop
	Non-blocking Java client example
	Non-blocking Java server example

