2026/02/15 21:34 1/10 Blocking TCP sockets in Java

Blocking TCP sockets in Java

Blocking Socket server source code

package org.ait;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.ServerSocket;
import java.net.Socket;
public class Server {
ServerSocket providerSocket;
Socket connection = null;
ObjectOutputStream out;
ObjectInputStream in;
String message;
Server() {

}

void run() {
try {
// 1. create a socket server listening to port 8080
providerSocket = new ServerSocket(8080);
// 2. waiting for the connection (here we are waiting until
next connection)
connection = providerSocket.accept();
// 3. create Input and Output streams
out = new ObjectOutputStream(connection.getOutputStream());
in = new ObjectInputStream(connection.getInputStream());
// 4. socket communication
do {
try {
message = (String) in.readObject();
System.out.println("client>" + message);
if (message.equals("bye")) {
sendMessage("bye");
}
} catch (ClassNotFoundException classnot) {
System.err.println("Data received in unknown
format");
}
} while (!message.equals("bye"));
} catch (IOException ioException) {
ioException.printStackTrace();
} finally {
// 4: close connection
try {
in.close();
out.close();

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/04
07:56

tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

providerSocket.close();
} catch (IOException ioException) {
ioException.printStackTrace();

}
}
}
void sendMessage(String msg) {
try {
out.writeObject(msg);
out.flush();
System.out.println("server>" + msq);
} catch (IOException ioException) {
ioException.printStackTrace();
}
}

public static void main(String args[]) {
Server server = new Server();
while (true) {
server.run();

}

Blocking Socket client source

package org.ait;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.Socket;
import java.net.UnknownHostException;
public class Client {
Socket requestSocket;
ObjectOutputStream out;
ObjectInputStream in;
String message;
Client() {
}
void run() {
try {
// 1. try to connect to the socket: localhost:8080
requestSocket = new Socket("localhost", 8080);
// 2. Input and Output streams
out = new
ObjectOutputStream(requestSocket.getOQutputStream());
in = new ObjectInputStream(requestSocket.getInputStream());
// 3: communications

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/15 21:34

2026/02/15 21:34 3/10 Blocking TCP sockets in Java

do {
try {
sendMessage("Hello server");
sendMessage("bye");
message = (String) in.readObject();
} catch (Exception e) {
System.err.println("data received in unknown

format");
}
} while (!message.equals("bye"));
} catch (UnknownHostException unknownHost) {
System.err.println("You are trying to connect to an unknown
host!");
} catch (IOException ioException) {
ioException.printStackTrace();
} finally {
// 4: close connection
try {
in.close();
out.close();
requestSocket.close();
} catch (IOException ioException) {
ioException.printStackTrace();
}
}
}
void sendMessage(String msg) {
try {
out.writeObject(msg);
out.flush();
System.out.println("client>" + msqg);
} catch (IOException ioException) {
ioException.printStackTrace();
}
}

public static void main(String args[]) {
Client client = new Client();
client.run();

Blocking UDP sockets in Java

The following Agent sends a message and waits for a response on port 8080, also with UDP. Older
versions of the Eclipse IDE, the text you type on the console can be sent by pressing ctrl+z

package org.ait;
import java.io.BufferedReader;

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:

2024/03/04 tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

07:56

import java.io.InputStreamReader;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
public class UDPClient {
public static void main(String args[]) throws Exception {
BufferedReader inFromUser = new BufferedReader(new
InputStreamReader(System.in));
DatagramSocket clientSocket = new DatagramSocket();
InetAddress IPAddress = InetAddress.getByName("localhost");
byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];
String sentence = inFromUser.readlLine();
sendData = sentence.getBytes();
DatagramPacket sendPacket = new DatagramPacket(sendData,
sendData. length, IPAddress, 8080);
clientSocket.send(sendPacket);
DatagramPacket receivePacket = new DatagramPacket(receiveData,
receiveData.length);
clientSocket.receive(receivePacket);
String modifiedSentence = new String(receivePacket.getData());
System.out.println("converted:" + modifiedSentence);
clientSocket.close();

The UDP server waits for the agents messages on port 8080 and converts them to uppercase letters

and sends them back to the client UDP socket.

package org.ait;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class UDPServer {

public static void main(String args[]) throws Exception {

DatagramSocket serverSocket = new DatagramSocket(8080);
byte[] bytesReceived = new byte[1024];
byte[] bytesSent = new byte[1024];

DatagramPacket receivePacket = new DatagramPacket (bytesReceived,

bytesReceived. length);
// here we are waiting for the packets
serverSocket.receive(receivePacket);
String textMessage = new String(receivePacket.getData());
System.out.println("I got: " + textMessage);
InetAddress IPAddress = receivePacket.getAddress();
int port = receivePacket.getPort();
String upperCaseText = textMessage.toUpperCase();
bytesSent = upperCaseText.getBytes();

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/15 21:34

2026/02/15 21:34 5/10 Blocking TCP sockets in Java

// send back

DatagramPacket sendPacket = new DatagramPacket(bytesSent,
bytesSent.length, IPAddress, port);

serverSocket.send(sendPacket);

serverSocket.close();

Non-blocking TCP sockets in Java

Traditional Multi threaded socket Non blocking 1 thread socket
s ~ —
Connection —»[Thread J Connection
s Y r ™
Sserveelt —»t Thread Connection —»t Thread J Connection Thread
y
s \
Connection - Thread Connection
\)
Reading:

e http://tutorials.jenkov.com/java-nio/nio-vs-io.html
¢ http://www.javaworld.com/article/2073344/core-java/use-select-for-high-speed-networking.html

[ServerSocket]

incomming connections nooming data

new connecto

Registering new connection] [processinput()

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:iss_t:sockets-blocking-nonblocking.png?id=tanszek%3Aoktatas%3Aiss_t%3Ajava_example_for_blocking_and_non-blocking_socket
http://tutorials.jenkov.com/java-nio/nio-vs-io.html
http://www.javaworld.com/article/2073344/core-java/use-select-for-high-speed-networking.html
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:informacios_rendszerek_integralasa:high_speed_socket.jpg?id=tanszek%3Aoktatas%3Aiss_t%3Ajava_example_for_blocking_and_non-blocking_socket

Last
update:
2024/03/04
07:56

tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

Non-blocking loop

ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.socket().bind(new InetSocketAddress(9999));

serverSocketChannel.configureBlocking(false);

blokkolasmentes mikodést
while(true){

// ez a sor jelzi a

SocketChannel socketChannel = serverSocketChannel.accept();

if(socketChannel
// the connection is

}

}

'= null){

accepted

Non-blocking Java client example

import
import
import
import
import
public
private String host;
private int port;
// Bounds on how much we
private static final int
private static final int
// Bounds on how long we
private static final int
private static final int

java.
java.
java.
java.
java.

net.Socket;
util.Random;

io.IO0Exception;
i0.InputStream;
io.0utputStream;

class Client implements Runnable {

write per cycle

minWriteSize = 1024;
maxWriteSize = 65536;

wait between cycles

minPause = (int) (0.05 * 1000);
maxPause = (int) (0.5 * 1000);

// Random number generator
Random rand = new Random();
public Client(String host, int port, int numThreads) {

this.host =
this.port

host;
port;

for (int 1 = 0; i < numThreads; ++i) {

new Thread(this).

}
}

public void run() {
byte buffer[] =
try {
Socket s =
InputStream in =

start();

new byte[maxWriteSize];

new Socket(host, port);

s.getInputStream();

https://edu.iit.uni-miskolc.hu/

Printed on 2026/02/15 21:34

2026/02/15 21:34 7/10 Blocking TCP sockets in Java

OutputStream out = s.getOutputStream();
while (true) {
int numToWrite = minWriteSize
+ (int) (rand.nextDouble() * (maxWriteSize -
minWriteSize));
for (int 1 = 0; i < numToWrite; ++i) {
buffer[i] = (byte) rand.nextInt(256);
}
out.write(buffer, 0, numToWrite);
int sofar = 0;
while (sofar < numToWrite) {
sofar += in.read(buffer, sofar, numToWrite - sofar);
}
System.out.println(Thread.currentThread() + " wrote " +
numToWrite);
int pause = minPause + (int) (rand.nextDouble() * (maxPause
- minPause));
try {
Thread.sleep(pause);
} catch (InterruptedException ie) {

}

}
} catch (IOException ie) {

ie.printStackTrace();
}
}

static public void main(String args[]) throws Exception {
new Client("localhost", 4444, 3);
}
}

Non-blocking Java server example

public class Server implements Runnable {
// The port we will listen on
private int port;
// A pre-allocated buffer for encrypting data
private final ByteBuffer buffer = ByteBuffer.allocate(16384);
public Server(int port) {
this.port = port;
new Thread(this).start();
}
public void run() {
try {
// Instead of creating a ServerSocket,
// create a ServerSocketChannel

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last

gggi?gé/m tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

07:56

ServerSocketChannel ssc = ServerSocketChannel.open();
// Set it to non-blocking, so we can use select
ssc.configureBlocking(false);
// Get the Socket connected to this channel, and bind it
// to the listening port
ServerSocket ss = ssc.socket();
InetSocketAddress isa = new InetSocketAddress(port);
ss.bind(isa);
// Create a new Selector for selecting
Selector selector = Selector.open();
// Register the ServerSocketChannel, so we can
// listen for incoming connections
ssc.register(selector, SelectionKey.OP ACCEPT);
System.out.println("Listening on port " + port);
while (true) {
// See if we've had any activity -- either
// an incoming connection, or incoming data on an
// existing connection
int num = selector.select();
// If we don't have any activity, loop around and wait
// again
if (num == 0) {
continue;
}
// Get the keys corresponding to the activity
// that has been detected, and process them
// one by one
Set keys = selector.selectedKeys();
Iterator it = keys.iterator();
while (it.hasNext()) {
// Get a key representing one of bits of I/0
// activity
SelectionKey key = (SelectionKey) it.next();
// What kind of activity is it?
if ((key.readyOps() & SelectionKey.OP ACCEPT) ==
SelectionKey.OP ACCEPT) {
System.out.println("acc");
// It's an incoming connection.
// Register this socket with the Selector
// so we can listen for input on it
Socket s = ss.accept();
System.out.println("Got connection from " + s);
// Make sure to make it non-blocking, so we can
// use a selector on it.
SocketChannel sc = s.getChannel();
sc.configureBlocking(false);
// Register it with the selector, for reading
sc.register(selector, SelectionKey.OP READ);
} else if ((key.readyOps() & SelectionKey.OP READ) ==
SelectionKey.OP READ) {

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/15 21:34

2026/02/15 21:34 9/10 Blocking TCP sockets in Java

SocketChannel sc = null;
try {
// It's incoming data on a connection, so
// process it
sc = (SocketChannel) key.channel();
boolean ok = processInput(sc);
// If the connection is dead, then remove it
// from the selector and close it
if (lok) {
key.cancel();
Socket s = null;

try {
s = sc.socket();
s.close();

} catch (IOException ie) {
System.err.println("Error closing socket

+s + ": "+ ie);

}

}

} catch (IOException ie) {

// 0On exception, remove this channel from the

// selector

key.cancel();

try {
sc.close();

} catch (IOException ie2) {
System.out.println(ie2);

}

System.out.println("Closed " + sc);

}
}

// We remove the selected keys, because we've dealt
// with them.
keys.clear();
}
} catch (IOException ie) {
System.err.println(ie);
}
}
// Do some cheesy encryption on the incoming data,
// and send it back out
private boolean processInput(SocketChannel sc) throws IOException {
buffer.clear();
sc.read(buffer);
buffer.flip();
// If no data, close the connection
if (buffer.limit() == 0) {
return false;

}

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last

3823585/04 tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

07:56
// Simple rot-13 encryption
for (int 1 = 0; i < buffer.limit(); ++i) {
byte b = buffer.get(i);
if ((b >= 'a' & b <= 'm') || (b >= 'A* & b <= 'M")) {
b += 13;
} else if ((b >= 'n' & b <= 'z2') || (b >= 'N' & b <= 'Z")) {
b -= 13;
}
buffer.put(i, b);
}
sc.write(buffer);
System.out.println("Processed " + buffer.limit() + " from " + sc);
return true;
}
static public void main(String args[]) throws Exception {
new Server(4444);
}
}
From:

https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for blocking_and_non-blocking_socket?rev=1709538962 4™

Last update: 2024/03/04 07:56

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/15 21:34

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:java_example_for_blocking_and_non-blocking_socket?rev=1709538962

	[Blocking TCP sockets in Java]
	[Blocking TCP sockets in Java]
	Blocking TCP sockets in Java
	Blocking Socket server source code
	Blocking Socket client source

	Blocking UDP sockets in Java
	Non-blocking TCP sockets in Java

	Non-blocking loop
	Non-blocking Java client example
	Non-blocking Java server example

