
2025/10/16 19:43 1/4 Messaging systems

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Messaging systems

Summary:

Messaging systems are asynchronous parallel systems
In the background there is socket communication as well
The system is asynchronous because we should not wait for the answer, execution flow is
continuous, non-blocking.
Each function call creates a message on the “Message Queue”. Message processing is alway
parallel in a different process.
This indirect method facilitated the loose coupling of different systems.
Guaranteed message delivery is feasible, because of the intermediate message queue.
Synchronous function calls can be simulated with a second message queue.

Message Queue implementations

A message queue is a software that enables communication between different software components
in a distributed system. It allows components to exchange messages asynchronously, which can
improve the overall reliability and scalability of the system. Message queues are commonly used in
software integration, where they facilitate the exchange of messages between different applications,
services, and systems.

RabbitMQ (https://www.rabbitmq.com/#features) is a popular open-source message broker that
implements the Advanced Message Queuing Protocol AMQP
(https://www.rabbitmq.com/resources/specs/amqp0-9-1). It allows applications to communicate with
each other through a message queue, which can be hosted locally or in the cloud. RabbitMQ supports
a wide range of messaging patterns, including point-to-point, publish-subscribe, and request-reply. It
also provides features such as message persistence, routing, and priority queuing.

In RabbitMQ, messages are published by producers to a specific exchange, which routes them to one
or more queues based on the specified routing key. Consumers then subscribe to the queues and
receive messages. RabbitMQ supports multiple programming languages, including Java, Python, .NET,
and Node.js, making it a versatile messaging solution for various use cases.

How to set up a queue in RabbitMQ:

install RabbitMQ (e.g. in a docker container)
create a connection: You need to establish a connection to RabbitMQ using a client
create a channel: channel is a lightweight connection to RabbitMQ, which allows you to interact
with the message broker. You can use the channel to declare queues, exchanges, and bindings.
declare a queue: use the channel to declare a queue by specifying its name, durability, and
other properties. For example, in Python, you can use the `queue_declare` method to create a
queue:

channel.queue_declare(queue='my_queue', durable=True)

This code creates a durable queue called 'my_queue', which means the queue will survive a RabbitMQ
broker restart.

https://www.rabbitmq.com/#features
https://www.rabbitmq.com/resources/specs/amqp0-9-1

Last
update:
2023/04/24
18:50

tanszek:oktatas:iss_t:messaging_systems https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:messaging_systems?rev=1682362220

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/16 19:43

Publish messages: Now you can publish messages to the queue using the `basic_publish`
method. In Python, you can do this as follows:

channel.basic_publish(exchange='', routing_key='my_queue', body='Hello,
world!')

This code publishes a message with the text “Hello, world!” to the 'my_queue' queue.

Consume messages: Finally, you can consume messages from the queue using the
`basic_consume` method. In Python, you can do this as follows:

def callback(ch, method, properties, body):
 print("Received message:", body)

channel.basic_consume(queue='my_queue', on_message_callback=callback,
auto_ack=True)

channel.start_consuming()

This code sets up a callback function that will be called every time a message is received from the
'my_queue' queue. The `auto_ack` parameter specifies whether to automatically acknowledge the
message after it has been processed. Finally, the `start_consuming` method starts consuming
messages from the queue.

Type of "Exchange" in RabbitMQ

An exchange in RabbitMQ is a messaging entity that receives messages from producers and routes
them to queues based on some criteria. When a producer sends a message to RabbitMQ, it sends the
message to an exchange. The exchange then examines the message's routing key and decides which
queue(s) the message should be sent to.

There are four types of exchanges in RabbitMQ:

Direct Exchange: A direct exchange routes messages based on a routing key that is matched
exactly with the routing key of the queue. When a message is sent to a direct exchange, RabbitMQ
will deliver it to the queue(s) whose binding key exactly matches the routing key of the message.

For example, a stock market application may send messages to a direct exchange with the
routing key being the stock ticker symbol, and each queue bound to the exchange would
represent a different stock. This way, the application can send specific messages to the
appropriate queue, where consumers can consume them and perform actions based on the
stock data.

 [Queue: Stock A]
 [Queue: Stock B]
[Direct Exchange: Stock Market] → [Queue: Stock C]
 [Queue: Stock D]
 [Queue: Stock E]

2025/10/16 19:43 3/4 Messaging systems

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Topic Exchange A topic exchange routes messages based on matching the routing key of the
message with one or more binding keys that the queue has specified. A binding key can contain one
or more words, separated by dots. The routing key of the message is also a string with words
separated by dots. The topic exchange uses a pattern matching algorithm to match the routing key of
the message with the binding keys of the queues.

For example, a blog platform may send messages to a topic exchange with the routing key
being the topic of the blog post. Queues can then bind to the exchange using a matching
pattern to receive messages that match certain criteria. For example, a queue bound to the
exchange with the pattern “sports.#” would receive messages about sports topics, while a
queue bound to the exchange with the pattern “#.technology” would receive messages about
technology topics. This way, the application can route messages to the appropriate queue
based on the topic of the blog post.

 [Queue: Sports]
[Topic Exchange: Blog Platform] → [Queue: Technology]
 [Queue: Politics]
 [Queue: Entertainment]

Fanout Exchange A fanout exchange routes messages to all queues that are bound to it, regardless
of the routing key of the message. It is useful for broadcasting messages to multiple queues or
multiple consumers.

For example, a notification system may send messages to a fanout exchange when a new
event is created. Each queue bound to the exchange would represent a different user, and all
users should receive the notification. This way, the application can broadcast the message to all
connected queues.

[Notification System] → [Fanout Exchange] → [Queue: User A]
 [Queue: User B]
 [Queue: User C]
 [Queue: User D]

Headers Exchange A headers exchange routes messages based on header values, instead of the
routing key. The headers exchange examines the headers of the message and performs a match
against the headers specified in the binding. If a match is found, the message is delivered to the
corresponding queue.

For example, a logistics system may send messages to a headers exchange with headers such
as “destination” and “delivery_method”. Queues can then bind to the exchange using a
matching set of headers to receive messages that match certain criteria. For example, a queue
bound to the exchange with headers “destination=New York” and “delivery_method=air” would
receive messages about shipments that are being delivered to New York by air. This way, the
application can route messages to the appropriate queue based on the specific headers of the
message.

[Logistics System] → [Headers Exchange] → [Queue: New York Air]
 [Queue: New York Sea]
 [Queue: Los Angeles Air]
 [Queue: Los Angeles Sea]

Each exchange type has its own routing algorithm and is used in different messaging scenarios.

Last
update:
2023/04/24
18:50

tanszek:oktatas:iss_t:messaging_systems https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:messaging_systems?rev=1682362220

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/16 19:43

Understanding the exchange types is important when designing RabbitMQ architectures that meet
specific business requirements.

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:messaging_systems?rev=1682362220

Last update: 2023/04/24 18:50

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:messaging_systems?rev=1682362220

	[Messaging systems]
	Messaging systems
	Message Queue implementations
	Type of "Exchange" in RabbitMQ

