
2025/10/16 19:43 1/6 Messaging systems

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Messaging systems

Summary:

Messaging systems are asynchronous parallel systems
In the background there is socket communication as well
The system is asynchronous because we should not wait for the answer, execution flow is
continuous, non-blocking.
Each function call creates a message on the “Message Queue”. Message processing is alway
parallel in a different process.
This indirect method facilitated the loose coupling of different systems.
Guaranteed message delivery is feasible, because of the intermediate message queue.
Synchronous function calls can be simulated with a second message queue.

Message Queue implementations

A message queue is a software that enables communication between different software components
in a distributed system. It allows components to exchange messages asynchronously, which can
improve the overall reliability and scalability of the system. Message queues are commonly used in
software integration, where they facilitate the exchange of messages between different applications,
services, and systems.

RabbitMQ (https://www.rabbitmq.com/#features) is a popular open-source message broker that
implements the Advanced Message Queuing Protocol AMQP
(https://www.rabbitmq.com/resources/specs/amqp0-9-1). It allows applications to communicate with
each other through a message queue, which can be hosted locally or in the cloud. RabbitMQ supports
a wide range of messaging patterns, including point-to-point, publish-subscribe, and request-reply. It
also provides features such as message persistence, routing, and priority queuing.

In RabbitMQ, messages are published by producers to a specific exchange, which routes them to one
or more queues based on the specified routing key. Consumers then subscribe to the queues and
receive messages. RabbitMQ supports multiple programming languages, including Java, Python, .NET,
and Node.js, making it a versatile messaging solution for various use cases.

How to set up a queue in RabbitMQ:

install RabbitMQ (e.g. in a docker container)
create a connection: You need to establish a connection to RabbitMQ using a client
create a channel: channel is a lightweight connection to RabbitMQ, which allows you to interact
with the message broker. You can use the channel to declare queues, exchanges, and bindings.
declare a queue: use the channel to declare a queue by specifying its name, durability, and
other properties. For example, in Python, you can use the `queue_declare` method to create a
queue:

channel.queue_declare(queue='my_queue', durable=True)

This code creates a durable queue called 'my_queue', which means the queue will survive a RabbitMQ
broker restart.

https://www.rabbitmq.com/#features
https://www.rabbitmq.com/resources/specs/amqp0-9-1

Last
update:
2023/04/24
19:05

tanszek:oktatas:iss_t:messaging_systems https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:messaging_systems?rev=1682363156

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/16 19:43

Publish messages: Now you can publish messages to the queue using the `basic_publish`
method. In Python, you can do this as follows:

channel.basic_publish(exchange='', routing_key='my_queue', body='Hello,
world!')

This code publishes a message with the text “Hello, world!” to the 'my_queue' queue.

Consume messages: Finally, you can consume messages from the queue using the
`basic_consume` method. In Python, you can do this as follows:

def callback(ch, method, properties, body):
 print("Received message:", body)

channel.basic_consume(queue='my_queue', on_message_callback=callback,
auto_ack=True)

channel.start_consuming()

This code sets up a callback function that will be called every time a message is received from the
'my_queue' queue. The `auto_ack` parameter specifies whether to automatically acknowledge the
message after it has been processed. Finally, the `start_consuming` method starts consuming
messages from the queue.

Type of "Exchange" in RabbitMQ

An exchange in RabbitMQ is a messaging entity that receives messages from producers and routes
them to queues based on some criteria. When a producer sends a message to RabbitMQ, it sends the
message to an exchange. The exchange then examines the message's routing key and decides which
queue(s) the message should be sent to.

There are four types of exchanges in RabbitMQ:

Direct Exchange: A direct exchange routes messages based on a routing key that is matched
exactly with the routing key of the queue. When a message is sent to a direct exchange, RabbitMQ
will deliver it to the queue(s) whose binding key exactly matches the routing key of the message.

For example, a stock market application may send messages to a direct exchange with the
routing key being the stock ticker symbol, and each queue bound to the exchange would
represent a different stock. This way, the application can send specific messages to the
appropriate queue, where consumers can consume them and perform actions based on the
stock data.

 [Queue: Stock A]
 [Queue: Stock B]
[Direct Exchange: Stock Market] → [Queue: Stock C]
 [Queue: Stock D]
 [Queue: Stock E]

2025/10/16 19:43 3/6 Messaging systems

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Topic Exchange A topic exchange routes messages based on matching the routing key of the
message with one or more binding keys that the queue has specified. A binding key can contain one
or more words, separated by dots. The routing key of the message is also a string with words
separated by dots. The topic exchange uses a pattern matching algorithm to match the routing key of
the message with the binding keys of the queues.

For example, a blog platform may send messages to a topic exchange with the routing key
being the topic of the blog post. Queues can then bind to the exchange using a matching
pattern to receive messages that match certain criteria. For example, a queue bound to the
exchange with the pattern “sports.#” would receive messages about sports topics, while a
queue bound to the exchange with the pattern “#.technology” would receive messages about
technology topics. This way, the application can route messages to the appropriate queue
based on the topic of the blog post.

 [Queue: Sports]
[Topic Exchange: Blog Platform] → [Queue: Technology]
 [Queue: Politics]
 [Queue: Entertainment]

Fanout Exchange A fanout exchange routes messages to all queues that are bound to it, regardless
of the routing key of the message. It is useful for broadcasting messages to multiple queues or
multiple consumers.

For example, a notification system may send messages to a fanout exchange when a new
event is created. Each queue bound to the exchange would represent a different user, and all
users should receive the notification. This way, the application can broadcast the message to all
connected queues.

[Notification System] → [Fanout Exchange] → [Queue: User A]
 [Queue: User B]
 [Queue: User C]
 [Queue: User D]

Headers Exchange A headers exchange routes messages based on header values, instead of the
routing key. The headers exchange examines the headers of the message and performs a match
against the headers specified in the binding. If a match is found, the message is delivered to the
corresponding queue.

For example, a logistics system may send messages to a headers exchange with headers such
as “destination” and “delivery_method”. Queues can then bind to the exchange using a
matching set of headers to receive messages that match certain criteria. For example, a queue
bound to the exchange with headers “destination=New York” and “delivery_method=air” would
receive messages about shipments that are being delivered to New York by air. This way, the
application can route messages to the appropriate queue based on the specific headers of the
message.

[Logistics System] → [Headers Exchange] → [Queue: New York Air]
 [Queue: New York Sea]
 [Queue: Los Angeles Air]
 [Queue: Los Angeles Sea]

Each exchange type has its own routing algorithm and is used in different messaging scenarios.

Last
update:
2023/04/24
19:05

tanszek:oktatas:iss_t:messaging_systems https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:messaging_systems?rev=1682363156

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/16 19:43

Understanding the exchange types is important when designing RabbitMQ architectures that meet
specific business requirements.

MQTT example

Clone repository into docker playground:

 git clone https://github.com/knehez/isi.git
 cd isis/mqtt-python
 docker-compose up

docker-compose.yml defines a multi-container application with three services: mqtt, consumer, and
producer.

The mqtt service is an instance of the toke/mosquitto Docker image, which is a popular open-source
MQTT broker. The service is configured to automatically restart unless it is explicitly stopped by the
user. Additionally, three volumes are defined for the service: “/mosquitto/conf”, “/mosquitto/data”,
and “/mosquitto/log”. These volumes are used to persist the configuration, data, and log files for the
MQTT broker respectively.

The consumer and producer services are both custom-built Docker images, which are defined using
the build key. The context key specifies the build context, which in this case is the current directory
(.), and the dockerfile key specifies the Dockerfile to use for the build. Additionally, a volume is
defined for each service that maps the current directory to the “/app” directory in the container.

Finally, the depends_on key is used to specify that both the consumer and producer services depend
on the mqtt service. This means that the mqtt service will be started before the other services, and
will be available for use by those services.

docker-compose.yml

version: '3.7'
services:
 mqtt:
 image: toke/mosquitto
 restart: unless-stopped
 volumes:
 - ./conf:/mosquitto/conf
 - ./data:/mosquitto/data
 - ./log:/mosquitto/log

 consumer:
 build:
 context: .
 dockerfile: Dockerfile-consumer
 volumes:
 - .:/app
 depends_on:

2025/10/16 19:43 5/6 Messaging systems

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 - mqtt

 producer:
 build:
 context: .
 dockerfile: Dockerfile-producer
 volumes:
 - .:/app
 depends_on:
 - mqtt

Dockerfile-consumer

This Dockerfile defines a simple containerized Python application that can be used as a consumer for
a message broker. The dependencies are installed in the container, and the consumer code is copied
into the container's /app directory. When the container is started, the consumer.py script is executed
to consume messages from the broker.

FROM python:3.9-slim-buster

WORKDIR /app

COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

COPY consumer.py .

CMD ["python", "-u", "consumer.py"]

Here is a breakdown of the different parts of the Dockerfile:

FROM python:3.9-slim-buster: This line specifies the base image for the Docker image. In this
case, the image is based on Python 3.9 running on a slimmed-down version of the Debian
Buster Linux distribution.

WORKDIR /app: This line sets the working directory for the container to /app. This is where the
consumer code and other related files will be located.

COPY requirements.txt .: This line copies the requirements.txt file from the current directory on
the host machine to the /app directory in the container. The requirements.txt file lists the
dependencies that the consumer requires to run.

RUN pip install –no-cache-dir -r requirements.txt: This line installs the dependencies listed in the
requirements.txt file using pip. The –no-cache-dir option is used to ensure that pip does not
cache the downloaded packages, which can help to reduce the size of the Docker image.

COPY consumer.py .: This line copies the consumer.py file from the current directory on the host
machine to the /app directory in the container. This is the main code file for the consumer.

CMD [“python”, “-u”, “consumer.py”]: This line specifies the command to run when the
container is started. In this case, it runs the consumer.py script using the Python interpreter
(python). The -u flag is used to enable unbuffered output, which ensures that log messages are
immediately visible in the console.

Last
update:
2023/04/24
19:05

tanszek:oktatas:iss_t:messaging_systems https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:messaging_systems?rev=1682363156

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/16 19:43

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:messaging_systems?rev=1682363156

Last update: 2023/04/24 19:05

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:messaging_systems?rev=1682363156

	[Messaging systems]
	Messaging systems
	Message Queue implementations
	Type of "Exchange" in RabbitMQ
	MQTT example

