2026/02/15 01:31 1/5 Protocol Buffers (Protobuf)

Protocol Buffers (Protobuf)

Protocol Buffers (Protobuf) is a method developed by Google for serializing structured data, similar to
XML or JSON. It is especially beneficial in applications that communicate with servers or store data,
where efficiency and the speed of data transmission are crucial. Protobuf is designed to be simpler
and more efficient than XML and JSON, offering both smaller message sizes and faster processing.

Protobuf requires you to define your structured data in a standard format in a .proto file, which is
then used to generate source code in your chosen programming language. This source code is used
to write and read your structured data to and from a variety of data streams and using a variety of

languages.

Key Features of Protobuf

Efficiency: Protobuf is designed to be more efficient than XML and JSON, both in terms of speed
and the size of the serialized data.

Cross-language: Protobuf supports generated code in various programming languages,
allowing for easy data exchange between systems written in different languages.

Backward compatibility: Protobuf is designed to maintain compatibility even if the structure
of the data changes, allowing old code to read new data formats and vice versa.

Less verbose: Protobuf messages are much less verbose than XML, leading to significant
bandwidth savings.

Using Protobuf in Data Integration

Protobuf can be particularly useful in data integration scenarios where different systems or
components need to exchange data efficiently.

* Cross-Language Communication: since Protobuf supports various languages (Java, C++,
Python, etc.), it's an excellent choice for integrating systems that are developed in different
programming languages.

e Microservices Architecture: in a microservices architecture, different services might need to
communicate with each other over a network. Protobuf can be used to serialize the messages
exchanged between services, ensuring efficient communication.

¢ API Development: when developing APIs, especially those that are used heavily or exposed to
external users, Protobuf can be used to efficiently serialize request and response bodies. This
can be particularly beneficial for mobile clients where bandwidth might be limited.

e Big Data and Streaming: For systems that process large volumes of data or stream data in
real-time, Protobuf can be used to serialize data points efficiently. This ensures that the system
can handle high volumes of data with minimal overhead.

» Data Storage: Protobuf can also be used for serializing data before storing it in databases or
file systems. Its efficient serialization can lead to performance improvements and reduced
storage costs.

To implement Protobuf in a data integration project, you would typically:

e Define your data structures in a .proto file.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/17
17:10

tanszek:oktatas:iss_t:modern_data_integration_based_on_protocol_buffer https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:modern_data_integration_based_on_protocol_buffer?rev=1710695435

¢ Use the Protobuf compiler (protoc) to generate data access classes in your preferred
programming language from your .proto files.

e Use these generated classes to serialize and deserialize your data structures for communication
between systems or services.

More details can be found here:
https://developers.google.com/protocol-buffers/docs/tutorials

1.) Install the translator from the official website. https://github.com/protocolbuffers/protobuf/releases
- in the case of Windows, unzip the file protoc-XXX.zip.

2.) Create a directory called ./proto and the file book.proto with the following content:

syntax = "“proto3";
message Book {
int32 id = 1;
string title = 2

string author

= 3;
float price = 4;

}

message Books {
repeated Book books = 1;

}

We have created two messages named Book and Books. Books can contain several Books. =1, = 2 at
the end of the lines indicates the internal position of the structure field, numbering starts from one.

3.) Run the following command:
.\protoc\bin\protoc.exe --python out=.\ book.proto

After running, book pb2.py is created, which is generated source code and contains the data
interface. This can be used to manage (serialize and de-serialize) the data.

4.) Upgrade protobuf interface
pip install —upgrade protobuf

5.) Create the server.py file with the following content:

import socket
import book pb2
import create books as c

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/15 01:31

https://developers.google.com/protocol-buffers/docs/tutorials
https://github.com/protocolbuffers/protobuf/releases

2026/02/15 01:31 3/5 Protocol Buffers (Protobuf)

protoc/bin/protoc --python out=./ book.proto
pip3 install --upgrade protobuf

books = c.create books()

book store = book pb2.Books()
for book in books:
book store.books.append(book)

bytes to send = book store.SerializeToString()

#TCP socket server

s = socket.socket(socket.AF INET, socket.SOCK STREAM)
s.bind((socket.gethostname(), 4100))

s.listen(10)

while True:
client socket, address = s.accept()
print(f"server> Connection from {address} has been established!\n")

client socket.send(bytes to send)
print(f"server> Message sent: {bytes to send}\n")

msg = client socket.recv(1024)
print(f"client> {msg}\n")
client socket.close()

if msg == b'bye"':
break

s.close()

6.) Create the create_books.py file with the following content:

import book pb2

def create books():
books = []

books.append(book pb2.Book())
books[0].id = 1

books[0].title = "Solaris"
books[0].author = "Stanislaw Lem"
books[0] .price = 7.54

books.append(book pb2.Book())
books[1].id = 2

books[1].title = "Dune"
books[1].author = "Frank Herbert"

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/03/17
17:10

tanszek:oktatas:iss_t:modern_data_integration_based_on_protocol_buffer https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:modern_data_integration_based_on_protocol_buffer?rev=1710695435

books[1].price = 9.87

books.append(book pb2.Book())
books[2].id = 3

books[2].title = "Foundation"
books[2].author = "Isaac Asimov"
books[2].price = 5.07

return books

7.) Create the client.py file with the following content:

import socket

import book pb2

from google.protobuf.json format import MessageToJson
import json

#TCP socket client
s = socket.socket(socket.AF INET, socket.SOCK STREAM)
s.connect((socket.gethostname(), 4100))

msg = s.recv(1024)
print(f"server> {msg}\n")

s.sendall(b'bye")
print(f"client> Message sent: {b'bye'}\n")

s.close()

books = book pb2.Books()
books.ParseFromString(msg)

json obj = MessageToJson(books)
print(f"client> The server's message in JSON:\n{json obj}")

dict obj = json.loads(json obj)

with open('data.json', 'w', encoding='utf-8') as f:
json.dump(dict obj, f, ensure ascii=False, indent=4)
print("client> data.json saved\n")

with open('data.bytes', 'wb') as fb:
fb.write(msg)
print("client> data.bytes saved\n")

8.) Run the server and client. python server.py then python client.py commands and let's see and
analyze what happens?

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/15 01:31

2026/02/15 01:31 5/5 Protocol Buffers (Protobuf)

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link: T
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:modern_data_integration_based_on_protocol_buffer?rev=1710695435 -

Last update: 2024/03/17 17:10

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:modern_data_integration_based_on_protocol_buffer?rev=1710695435

	[Protocol Buffers (Protobuf)]
	[Protocol Buffers (Protobuf)]
	Protocol Buffers (Protobuf)
	Key Features of Protobuf
	Using Protobuf in Data Integration

