
2026/02/16 00:13 1/4 Blocking socket server

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Blocking socket server

To illustrate the difference with a blocking socket approach, we'll create a simple blocking TCP server
and a corresponding client. This server will handle one connection at a time in a blocking manner,
meaning it will wait (or block) on I/O operations like accepting new connections or receiving data.

import socket

HOST = '127.0.0.1' # Standard loopback interface address (localhost)
PORT = 65432 # Port to listen on (non-privileged ports are > 1023)

Create a socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as server_socket:
 server_socket.bind((HOST, PORT))
 server_socket.listen()
 print(f"Server is listening on {HOST}:{PORT}")

 while True:
 # Accept a new connection
 conn, addr = server_socket.accept()
 with conn:
 print(f"Connected by {addr}")
 while True:
 data = conn.recv(1024)
 if not data:
 break # No more data from client, close connection
 print(f"Received {data.decode()} from {addr}")
 response = "This is a response from the server.".encode()
 conn.sendall(response)

Blocking client

import socket

HOST = '127.0.0.1' # The server's hostname or IP address
PORT = 65432 # The port used by the server

Create a socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
 s.connect((HOST, PORT))
 print("Connected to the server")

 # Send data
 message = 'Hello, server'.encode()
 s.sendall(message)

Last
update:
2024/02/25
15:54

tanszek:oktatas:iss_t:python_example_for_blocking_and_non-blocking_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:python_example_for_blocking_and_non-blocking_socket?rev=1708876489

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 00:13

 print("Message sent to the server")

 # Wait for a response
 data = s.recv(1024)
 print("Received response from the server")

print(f"Received: {data.decode()}")

Non-blocking server

Creating a non-blocking TCP socket server in Python involves setting up a socket to listen for
connections without blocking the main execution thread of the program. Below is a simple example of
a non-blocking TCP server that accepts multiple client connections and handles them asynchronously.
This server uses the select method, which is a way to check for I/O readiness on sockets, making it
possible to manage multiple connections without blocking on any single one.

import socket
import select

HOST = '127.0.0.1' # Standard loopback interface address (localhost)
PORT = 65432 # Port to listen on (non-privileged ports are > 1023)

Create a socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

Bind the socket to the address and port
server_socket.bind((HOST, PORT))

Listen for incoming connections
server_socket.listen()

print(f"Listening on {HOST}:{PORT}")

Set the server socket to non-blocking mode
server_socket.setblocking(0)

Keep track of input sockets
inputs = [server_socket]
outputs = []

while inputs:
 # Wait for at least one of the sockets to be ready for processing
 readable, writable, exceptional = select.select(inputs, outputs, inputs)

 for s in readable:

2026/02/16 00:13 3/4 Blocking socket server

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 if s is server_socket:
 # Accept new connection
 connection, client_address = s.accept()
 print(f"New connection from {client_address}")
 connection.setblocking(0)
 inputs.append(connection)
 else:
 data = s.recv(1024)
 if data:
 # A readable client socket has data
 print(f"Received {data} from {s.getpeername()}")
 # Add output channel for response
 if s not in outputs:
 outputs.append(s)
 else:
 # Interpret empty result as closed connection
 print(f"Closing {client_address}")
 if s in outputs:
 outputs.remove(s)
 inputs.remove(s)
 s.close()

 for s in writable:
 response = b'This is a response from the server.'
 s.send(response)
 # Once response has been sent, we don't need to write anymore
 outputs.remove(s)

 for s in exceptional:
 print(f"Handling exceptional condition for {s.getpeername()}")
 # Stop listening for input on the connection
 inputs.remove(s)
 if s in outputs:
 outputs.remove(s)
 s.close()

Non blocking client

To test the non-blocking TCP server, you can create a simple client that connects to the server, sends
a message, and then waits to receive a response. Below is an example of a basic TCP client in Python
that interacts with our non-blocking server.

import socket

HOST = '127.0.0.1' # The server's hostname or IP address
PORT = 65432 # The port used by the server

Create a socket

Last
update:
2024/02/25
15:54

tanszek:oktatas:iss_t:python_example_for_blocking_and_non-blocking_socket https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:python_example_for_blocking_and_non-blocking_socket?rev=1708876489

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 00:13

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
 # Connect to the server
 s.connect((HOST, PORT))
 print("Connected to server")

 # Send data
 message = 'Hello, server'.encode()
 s.sendall(message)
 print("Message sent to server")

 # Wait for a response
 data = s.recv(1024)
 print("Received response from server")

print(f"Received: {data.decode()}")

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:python_example_for_blocking_and_non-blocking_socket?rev=1708876489

Last update: 2024/02/25 15:54

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:python_example_for_blocking_and_non-blocking_socket?rev=1708876489

	[Blocking socket server]
	[Blocking socket server]
	[Blocking socket server]
	Blocking socket server
	Blocking client
	Non-blocking server
	Non blocking client

