2026/02/16 01:30 1/8 What does software integration mean?

What does software integration mean?

Definition
Software integration is a development process in which separate software systems—applications and

components—are connected so they work together to form a new, unified system.

Phases

1.) Requirements assessment and planning

e requirements assessment: identifying user needs and business requirements
e planning: developing the integration strategy, designing the system architecture and
integration points

2.) Requirements analysis and specification

e analysis: detailed assessment of required functions and the capabilities of existing systems
» specification: definition of interfaces and data exchange formats

3.) Development and implementation

e development: creation of integration code for existing systems
e implementation: deployment of new components and modification of existing ones

4.) Testing and validation

5.) Maintenance and support

Legacy Systems

Definition The term legacy system refers to IT systems that use older (possibly obsolete)
technologies but are still actively operating and play an essential role in an organisation's everyday
operation.

Why use legacy systems?

¢ Long lifetime and stability: Many legacy systems have operated reliably for years or even
decades. If a system functions well and is mission-critical, there is often no compelling reason to
replace it.

e Cost considerations: Replacing an entire system can be extremely expensive.

e Complexity: Legacy systems are often deeply integrated into other organizational processes
and systems.

¢ Risk avoidance: Organizations often avoid the risk of replacement

Why Are They Not Replaced?

e Cost and lack of resources: Replacement is often not economically feasible, and risk estimation

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last

;822;8:2/15 tanszek:oktatas:iss_t:software_integration https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:software_integration?rev=1771193822

22:17

can be difficult due to strict security requirements.
e Disruption of business processes: Introducing a new system may significantly disrupt daily
operations. Many organizations prioritize operational stability (e.g., banking institutions).

Solutions

e Gradual migration: Instead of replacing the entire system at once, organizations incrementally
migrate to new systems by replacing specific components or functionalities.

e Qutsourcing maintenance and operation: Maintenance and operation of legacy systems may be
delegated to external service providers, reducing internal costs and specialized staffing
requirements.

Overview of Integration Strategies

Point to Point connection

Components connect directly to each other, typically via file transfer or direct database access. There
is no intermediary layer, therefore communication is fast. Initially, it is easy to implement.

flowchart LR %% Nodes R[Radiology] EMR[EMR] CDB[Central Database] PS[Patient Search]
PDB[Patient DB] ER[Emergency Dept.] FIN[Billing / Finance] PHARM[Pharmacy] %% Layout helpers
(optional) %% Try to mimic the original positions by grouping subgraph Left[] direction TB R PS FIN
end subgraph Middle[] direction TB EMR PDB PHARM end subgraph Right[] direction TB CDB ER end
%% Connections (based on the diagram) R <--> PS PS <--> EMR PS --> PDB PS --> FIN EMR --> PDB
EMR --> FIN EMR <--> CDB PDB <--> ER PDB <--> PHARM ER --> PHARM PHARM --> ER CDB --> ER
ER --> CDB

Disadvantages - Challenges

e Difficult to scale

e Future expansion can become complex

e The number of connections grows exponentially = n(n—1)/2 connections
¢ Fragile architecture, as monitoring and troubleshooting errors are difficult

Middleware Integration

Components do not connect to each other directly; instead, they communicate through a central
intermediary (e.g., APl Gateway, Application Server, Enterprise Service Bus - ESB).

The intermediary layer handles different communication protocols.

e Monitoring capabilities: communication tracking and centralized supervision
e Improved scalability

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 01:30

2026/02/16 01:30 3/8 What does software integration mean?

e Centralized functions: authorization management and transaction handling
Disadvantages - Challenges

e Complexity: system development costs are high
» Monolithic architecture - one central server serving many clients

flowchart TB EMR[EMR] RAD[Radiology] FIN[Billing and Finance] ER[Emergency Department]
MW[Message Oriented Middleware] PS[Patient Search] PDB[Patient Database] CDB[Central Database]
PHARM[Pharmacy] EMR --> MW RAD --> MW FIN --> MW ER --> MW MW --> PS MW --> PDB MW -->
CDB MW --> PHARM

Message Queue-Based Integration

Components do not connect to each other directly; instead, they communicate via message queues.
Messages are processed asynchronously.

e Monitoring capabilities: use of specialized queues (e.g., Dead Letter Queue - DLQ)
e Highly scalable architecture
e Naturally suited for cloud-based systems

Disadvantages - Challenges

e Complexity: system development costs are high
e Requires advanced expertise and careful architectural design

flowchart TB %% Top layer systems RAD[Radiology] EMR[EMR] FIN[Billing] ER[Emergency
Department] %% Message Queues Q1[[Queue]] Q2[[Queue]] Q3[[Queue]] %% Bottom layer systems
PS[Patient Search] PDB[Patient Database] CDB[Central Database] PHARM[Pharmacy] %% Top ->
Queues RAD --> Q1 EMR --> Q1 FIN --> Q2 ER --> Q3 %% Queue interconnection Q2 <--> Q3 %%
Queues -> Bottom Q1 --> PS Q2 --> PDB Q3 --> CDB Q3 --> PHARM

Data Sharing

A simple approach to integration is data sharing.

Data sharing-based integration aims to transfer and share data between systems. This enables
individual systems to access and utilize data stored in other systems.

Data sharing can take several forms:

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last

;822;8:2/15 tanszek:oktatas:iss_t:software_integration https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:software_integration?rev=1771193822

22:17

Comparison of Data Sharing Approaches

e Data Migration is typically a one-time process: It is suitable for system replacement or major
upgrades, but it does not ensure continuous consistency.

e Data Synchronization provides ongoing consistency between systems: It is appropriate when
multiple systems must maintain aligned datasets over time.

e Data Sharing Services enable real-time access to shared data: They are ideal for modern
distributed and cloud-based architectures that require immediate data availability.

File-Based Data Sharing

The most fundamental method of data sharing.
One application writes data, while another application reads data from the same file.

The data files are stored in a central location — such as a shared folder (e.g., NFS) or an (S)FTP
server.

The information flow is unidirectional: A - B.
Data Encoding

Most file-based integration approaches use text-based files.
The most common formats are:

e Plain text
e XML
¢ JSON (in modern systems)

Raw text formats may use:

e Fixed-length records
 Variable-length records (commonly used in billing and financial systems)

For variable-length records, a delimiter is required to separate data fields. The most widely known
method is CSV (Comma-Separated Values).

flowchart LR A[System A] STORAGE[[Shared Folder\nFTP Server]] B[System B] A -- writes -->
STORAGE STORAGE -- reads --> B

File-Based Integration with Lock Mechanism

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 01:30

2026/02/16 01:30 5/8 What does software integration mean?

State Files

State files can be used to track the processing status of data files.
These files may contain the current processing state, such as:
e “in progress”

e “completed”
* “failed”

File-Based Integration with Lock Mechanism

State Files

State files can be used to track the processing status of data files.
These files may contain the current processing state, such as:
* “in progress”

e “completed”
e “failed”

flowchart LR A[System A] STORAGE[[Shared Folder / FTP Server]] LOCK[(data.lock)] B[System B] A --
"1) create lock" --> LOCK A -- "2) write data" --> STORAGE B -- "3) detect lock" --> LOCK B -- "waits" -
-> STORAGE A -- "4) remove lock" --> LOCK B -- "5) read data" --> STORAGE

Lock File Mechanism
1) Lock file creation: System A begins processing a data file and creates a lock file, for example:
data.lock.

2) Writing phase: System A creates or writes the data file while data.lock exists. System B attempts to
access the data file but detects that the lock file exists, therefore it waits.

3) Completion: System A finishes processing and removes the data.lock file.
4) Reading phase: System B detects the data.lock file has been removed, and it can begin its own
processing.

Purpose of the Lock Mechanism

This method ensures that only one system processes the data file at a time, preventing data conflicts
and inconsistencies.

The use of lock files is a simple and effective technique for process synchronization and coordination
in file-based integration.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last

;822;8:2/15 tanszek:oktatas:iss_t:software_integration https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:software_integration?rev=1771193822

22:17

Limitations of File-Based Integration

This method remains widely used today, but it has several significant disadvantages:

e The data sharing is not real-time. It is typically suitable for daily, weekly, or monthly batch data
exchange. If data is modified between cycles — for example, if a customer changes their
address — the invoicing application may still send the invoice to the old address because it
receives the update only later.

* It may become unreliable when transferring a large number of files (although tools such as
rsync can help).

e Successful integration requires that developers of both applications (in most cases) agree on
and understand:

the file format

file naming conventions

file storage location

how file deletion is handled

the lock mechanism used

the file transfer method

ok wNhe

Database-Based Data Sharing

Database-based integration is a method that enables data sharing and synchronization between
different systems directly through databases.

In this approach, multiple applications and systems use either:

¢ a shared database, or
e database replication

to access and manage data.

flowchart LR A[Application A] B[Application B] DB[(Shared Database)] A <--> DB B <--> DB

The same system with db replication:

flowchart LR A[Application A] C[Application C] DB1[(Primary Database)] B1[Application B]
B2[Application B] DB2[(Replica Database)] A <--> DB1 C <--> DB1 DB1 -- replication --> DB2 B1 <-->
DB2 B2 <--> DB2

Example

E-commerce platform and Warehouse Management System: The e-commerce platform can be directly
integrated with the warehouse database to provide real-time inventory information.

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 01:30

2026/02/16 01:30 7/8 What does software integration mean?

Similarities to File-Based Integration

 Platform-independent connectivity (e.g., JDBC, ODBC)

e Multiple instances of identical components may access the same database
o Synchronization issue: Who processes the next record in the queue?
o However, it can be an ideal solution for data collection scenarios.

Limitations

» Not real-time by default. If one application writes to the database, another application does not
automatically receive notification.
o Possible solutions:
» Database notification mechanisms (e.g., PostgreSQL LISTEN and NOTIFY)
= Triggers
= Polling mechanisms
¢ Security considerations: Properly defined access rights are required (table access, permitted
operations). Developers often restrict direct visibility of database structures.
e Lack of well-defined interfaces — this approach provides only data-level integration.

When to Use Database-Based Integration?

Database-based integration is appropriate in the following scenarios:

* When multiple applications need direct access to the same structured data.
When strong transactional consistency is required.

When systems operate within the same organizational or security boundary.
When the data model is stable and well-defined.

When high-performance querying and reporting are necessary.

e When database replication can support load balancing or read scalability.

However, it may NOT be the best choice:

e In loosely coupled, distributed architectures (e.g., microservices).

e When clear service-level interfaces are required.

e When strict decoupling between systems is a design goal.

¢ In highly scalable cloud-native environments where message-based communication is
preferred.

Integration Strategy Comparison

Asbect File-Based Database-Based Message Queue-Based
P Integration Integration Integration
Coupling Tight coupling Tight to medium coupling Loose coupling

(shared file format) |(shared schema)

Asynchronous message
exchange

Yes (naturally
asynchronous)

Communication Style |Batch, unidirectional |Data-level sharing

Real-Time Capability |No Not by default

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last

;822;8:2/15 tanszek:oktatas:iss_t:software_integration https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:software_integration?rev=1771193822
22:17
Asbect File-Based Database-Based Message Queue-Based
P Integration Integration Integration

Scalability Limited Moderate High

o - o Built-in monitorin
Monitoring Difficult Database-level monitoring u queue monitoring

(DLQ, metrics)

Complexity Low initial complexity |Medium High

Transaction Support

No native support

Strong ACID support

Depends on message
broker

Typical Use Case

Periodic data

Shared enterprise systems

Distributed / cloud-native

exchange systems
Interface Definition File format Shared database schema Message co_nt.ra.act/
agreement schema definition
Cloud-Native . .
Suitability Low Medium High
From:

https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:

https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:software_integration?rev=1771193822)

Last update: 2026/02/15 22:17

https://edu.iit.uni-miskolc.hu/

Printed on 2026/02/16 01:30

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:iss_t:software_integration?rev=1771193822

	[What does software integration mean?]
	What does software integration mean?
	Phases
	Legacy Systems

	Overview of Integration Strategies
	Point to Point connection

	Middleware Integration
	Disadvantages – Challenges

	Message Queue-Based Integration
	Disadvantages – Challenges

	Data Sharing
	Comparison of Data Sharing Approaches

	File-Based Data Sharing
	Data Encoding

	File-Based Integration with Lock Mechanism
	State Files

	File-Based Integration with Lock Mechanism
	State Files
	Lock File Mechanism
	Purpose of the Lock Mechanism

	Limitations of File-Based Integration
	Database-Based Data Sharing
	Example
	Similarities to File-Based Integration
	Limitations
	When to Use Database-Based Integration?

	Integration Strategy Comparison

