
2026/02/16 09:02 1/8 � Adatbázisok története és fejlődése

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Régi anyag:
https://docs.google.com/presentation/d/1_nmA1F4ag_O-qlJAE4TfVuyfLgSruZLW/edit?usp=sharing&oui
d=110539736176923279178&rtpof=true&sd=true

� Adatbázisok története és fejlődése

Relációs adatbázisoktól a NoSQL-en át a vektor adatbázisokig

1. Bevezetés

Az adatbázisok az informatikai rendszerek alapvető elemei, amelyek lehetővé teszik az adatok
hatékony tárolását, visszakeresését, rendezését és módosítását. A modern világban hatalmas
mennyiségű adat keletkezik másodpercenként, és ezek strukturált tárolása elengedhetetlen a
döntéstámogatáshoz, automatizáláshoz és gépi tanuláshoz.

Miért van szükség adatbázisokra?

Az adatok szervezett tárolása lehetővé teszi azok gyors visszakeresését és elemzését.
Több felhasználó egyidejűleg dolgozhat ugyanazon adatokkal (konkurens hozzáférés).
Biztosítani lehet az adatintegritást és a hozzáférés-ellenőrzést.
Az adatok rendszeres mentése és visszaállítása egyszerűbbé válik.
Automatizált folyamatokhoz (pl. webalkalmazások, gépi tanulás) szükséges egy megbízható
háttértároló.

Példa: Egy webshopban több ezer termék, rendelés és felhasználói adat van. Ezek kereshető tárolása
adatbázis nélkül gyakorlatilag lehetetlen lenne.

Adat vs. információ

Adat: nyers tények, mért vagy rögzített értékek, amelyek még nem feltétlenül bírnak
jelentéssel.

Példa: `42`, `2025-05-07`, `„Piros”`
Információ: értelmezett adat, amely kontextusba helyezve új tudást jelent.

Példa: „42 éves a felhasználó”, vagy „A rendelés dátuma: 2025-05-07”

Az adat tehát az alap, amiből – megfelelő feldolgozással – információt nyerhetünk. Az adatbázis célja
az adatok strukturált tárolása annak érdekében, hogy információvá alakíthassuk őket.

Strukturált, félstrukturált és strukturálatlan adatok

Strukturált adat:
Táblázatos formában rendezett, előre meghatározott sémával rendelkezik.
Példa: SQL adatbázisok, Excel-táblák, CRM rendszerek.
Jellemző: gyors kereshetőség, jól lekérdezhető.

https://docs.google.com/presentation/d/1_nmA1F4ag_O-qlJAE4TfVuyfLgSruZLW/edit?usp=sharing&ouid=110539736176923279178&rtpof=true&sd=true
https://docs.google.com/presentation/d/1_nmA1F4ag_O-qlJAE4TfVuyfLgSruZLW/edit?usp=sharing&ouid=110539736176923279178&rtpof=true&sd=true

Last
update:
2025/05/07
06:55

tanszek:oktatas:muszaki_informatika:adattarolas_adatbazisok https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:adattarolas_adatbazisok?rev=1746600959

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

Félstrukturált adat:
Nincs fix sémája, de tartalmaz címkéket vagy metaadatokat.
Példa: XML, JSON, YAML fájlok, logok.
Rugalmasabb, de nehezebb indexelni és lekérdezni.

Strukturálatlan adat:
Nincs formázása, nem egyértelmű a tartalma.
Példa: szövegfájlok, képek, videók, e-mailek, hangfelvételek.
Ezeket általában keresőmotorokkal vagy mesterséges intelligenciával lehet feldolgozni
(pl. szöveg- vagy képelemzés).

Az adatbázisok fejlődése szorosan összefügg azzal, hogyan és milyen típusú adatokat akarunk
hatékonyan kezelni.

2. Relációs adatbázisok (RDBMS)

A relációs adatbázisok az egyik legelterjedtebb adatbázis-típusok közé tartoznak. Az adatok táblákban
(relációkban) tárolódnak, ahol minden tábla sorokból (rekordokból) és oszlopokból (mezőkből) áll. A
relációs modell megbízható és jól definiált struktúrát biztosít az adatok kezeléséhez.

Történet

A relációs modellt Edgar F. Codd matematikus javasolta 1970-ben.
A modell a halmazelméletre és a predikátumlogikára épül.
A ’70-es, ’80-as években megjelentek az első RDBMS rendszerek: IBM System R, Ingres, Oracle.
A SQL (Structured Query Language) nyelv szabványosítása nagyban hozzájárult az
elterjedéséhez.

Jellemzők

Adatszerkezet: táblázatos (sorok és oszlopok).
Szigorú séma: minden táblának előre meghatározott szerkezete van (mezőtípusok, kulcsok
stb.).
Kapcsolatok: táblák között idegen kulcsokon keresztül hozunk létre kapcsolatokat.
ACID tulajdonságok:

Atomicity – a tranzakciók oszthatatlanok.
Consistency – az adatbázis érvényességi szabályai nem sérülnek.
Isolation – párhuzamos tranzakciók nem befolyásolják egymást.
Durability – a végrehajtott tranzakciók tartósan megmaradnak.

Előnyök

Adatintegritás: kulcsok, megszorítások és szabályok segítségével biztosítható.
Lekérdezhetőség: a SQL nyelv rendkívül erős és kifejező eszköztárat ad.
Stabilitás és érettség: hosszú távon kipróbált, optimalizált rendszerek.
Többfelhasználós működés: jogosultságkezelés, tranzakciókezelés.

2026/02/16 09:02 3/8 � Adatbázisok története és fejlődése

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Hátrányok

Skálázhatóság: nagy adatmennyiség és sok párhuzamos felhasználó esetén nehezen osztható
szét több gépre (horizontális skálázás).
Rugalmatlanság: séma módosítása bonyolult lehet, különösen ha az adatstruktúra gyakran
változik.
Strukturálatlan adatok kezelése: szöveg, kép, videó típusú adatok kezelésére nem ideális.

Népszerű relációs adatbázis-kezelő rendszerek (RDBMS-ek)

MySQL – nyílt forráskódú, népszerű webalkalmazások körében (pl. WordPress).
PostgreSQL – fejlett funkciók, szabványos SQL támogatás, objektum-orientált kiegészítések.
Oracle Database – robusztus vállalati megoldás, fejlett biztonság és replikációs lehetőségek.
Microsoft SQL Server – integráció Microsoft-technológiákkal, könnyű használat.

Példa: Egyszerű SQL tábla és lekérdezés

Tábla: `diakok`

id nev szuletesi_ev
1 Kovács Anna 2003
2 Nagy Péter 2002

SQL lekérdezés:

SELECT nev FROM diakok WHERE szuletesi_ev < 2003;

Ez a lekérdezés visszaadja azoknak a diákoknak a nevét, akik 2003 előtt születtek.

3. NoSQL adatbázisok

A NoSQL adatbázisok a relációs modellek alternatívájaként jelentek meg, amikor az internetes
alkalmazások, a Big Data és a valós idejű feldolgozások új követelményeket támasztottak az
adatkezeléssel szemben. A „NoSQL” nem feltétlenül jelenti azt, hogy nem használható benne SQL,
hanem inkább azt, hogy nem relációs modell alapján működik.

Miért jelentek meg?

Az adatok mennyisége gyorsan növekedett (pl. közösségi média, szenzoradatok).
Az adatszerkezet egyre rugalmasabb lett – gyakran változó mezők, új attribútumok.
Szükség volt horizontális skálázásra – sok szerver párhuzamos futtatása.
Alkalmazásoknak nagy sebességre és alacsony késleltetésre volt szüksége.

Last
update:
2025/05/07
06:55

tanszek:oktatas:muszaki_informatika:adattarolas_adatbazisok https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:adattarolas_adatbazisok?rev=1746600959

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

Jellemzők

Sémanélküli modell: nincs előre rögzített mezőszerkezet.
BASE modell:

Basically Available – mindig elérhető adatbázis
Soft state – az adat idővel változhat
Eventually consistent – idővel elérhető a konzisztencia (nem garantált azonnal)

Horizontálisan skálázható: könnyen bővíthető több gépre.
Nagy teljesítmény: ideális valós idejű alkalmazásokhoz.

NoSQL típusok és példák

Dokumentum-orientált adatbázisok
Minden rekord egy önálló dokumentum (pl. JSON formátumban).
Rugalmas szerkezet, ideális REST API-khoz.
Példa: MongoDB, CouchDB

Kulcs-érték tárolók
Egyszerű szerkezet: kulcs → érték (mint egy szótár).
Nagyon gyors, kiváló gyorsítótárazásra.
Példa: Redis, Amazon DynamoDB

Oszlop-orientált adatbázisok
Az adatok nem sorokban, hanem oszlopokban tárolódnak.
Hatékony analitikai feldolgozás nagy adattáblákon.
Példa: Apache Cassandra, HBase

Gráf adatbázisok
Adatok és azok kapcsolatai gráfként ábrázolva (csomópontok és élek).
Nagyon hasznos hálózati elemzésekhez, pl. közösségi hálók, útvonalkeresés.
Példa: Neo4j, ArangoDB

Előnyök

Nagy teljesítmény, alacsony válaszidő.
Könnyen skálázható horizontálisan.
Rugalmas adatszerkezet – ideális gyorsan változó alkalmazásokhoz.
Néhány esetben beépített replikáció, sharding, elosztott feldolgozás.

Hátrányok

Nincs szabványos nyelv (mint az SQL).
Az adatintegritás és konzisztencia nem mindig garantált.
Alkalmazásfejlesztéskor a logika egy része az adatbázis helyett a kódban jelenik meg.
Komplex lekérdezések megvalósítása nehézkes lehet.

2026/02/16 09:02 5/8 � Adatbázisok története és fejlődése

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Példa: MongoDB dokumentum

Egy MongoDB kollekcióban tárolt dokumentum példája:

{
 "_id": "u123",
 "nev": "Kiss János",
 "eletkor": 29,
 "cim": {
 "varos": "Budapest",
 "iranyitoszam": "1111"
 }
}

Egy lekérdezés: azokat a felhasználókat kérdezzük le, akik életkora nagyobb mint 25:

db.felhasznalok.find({ "eletkor": { "$gt": 25 } })

4. NewSQL adatbázisok

A NewSQL adatbázisok a relációs adatbázisok továbbfejlesztett változatai, amelyek célja, hogy
megtartsák a klasszikus RDBMS rendszerek előnyeit (pl. SQL, ACID), ugyanakkor képesek legyenek a
modern alkalmazások által megkövetelt horizontális skálázásra és magas teljesítményre, mint a
NoSQL rendszerek.

Miért jöttek létre?

A vállalatok továbbra is igénylik a strukturált, relációs adatsémát és az ACID garanciákat.
Ugyanakkor szükség van a modern skálázhatóságra, amit a NoSQL rendszerek nyújtanak.
A cél: „legyen meg a torta és együk is meg” – relációs modell + felhőbarát architektúra.

Jellemzők

Relációs modell: táblák, kulcsok, SQL nyelv
ACID tranzakciók: konzisztencia és megbízhatóság
Elosztott architektúra: több szerveren futó adatbázis
Skálázhatóság: automatikus sharding, load balancing
Magas rendelkezésre állás: beépített replikáció, hibatűrés

Előnyök

Kombinálja a relációs adatbázisok előnyeit a NoSQL skálázhatóságával
Alkalmas nagy forgalmú, üzletkritikus alkalmazásokhoz
Használható ismerős SQL nyelvvel, nem igényel új tanulási görbét

Last
update:
2025/05/07
06:55

tanszek:oktatas:muszaki_informatika:adattarolas_adatbazisok https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:adattarolas_adatbazisok?rev=1746600959

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

Hátrányok

Bonyolultabb architektúra és üzemeltetés, mint egy egyszerű SQL adatbázisnál
Még viszonylag fiatal technológia – kisebb ökoszisztéma, kevesebb szakember
Néhány megoldás zárt forráskódú, kereskedelmi licenc alatt áll

Példák

Google Spanner
A Google saját globálisan elosztott relációs adatbázisa.
Világszintű szinkronizációval garantálja a konzisztenciát.

CockroachDB
Nyílt forráskódú, elosztott relációs adatbázis.
Automatikus skálázás és replikáció.
PostgreSQL-kompatibilis SQL interfész.

VoltDB
Főként valós idejű analitikára és tranzakciókra specializált.
Nagy sebesség, memóriabeli működés.

Példa: CockroachDB SQL lekérdezés

CREATE TABLE felhasznalok (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 nev TEXT NOT NULL,
 regisztralt TIMESTAMP DEFAULT now()
);

SELECT * FROM felhasznalok WHERE nev LIKE 'K%';

A fenti példa egy CockroachDB tábla létrehozását és egyszerű lekérdezését mutatja be, PostgreSQL-
kompatibilis SQL nyelven.

5. Vektor adatbázisok

A vektor adatbázisok új generációs adatbázis-rendszerek, amelyek a mesterséges intelligencia és a
gépi tanulás elterjedésével váltak népszerűvé. Céljuk nem strukturált adatok – például szövegek,
képek, hangok – jelentés szerinti keresése, amelyet az ún. *embedding* (beágyazott
vektorreprezentáció) segítségével valósítanak meg.

Miért van rájuk szükség?

A hagyományos adatbázisok nem alkalmasak jelentésalapú keresésre.
Az LLM-ek, képfeldolgozók, hangfelismerők vektorokat állítanak elő, amelyek geometriailag

2026/02/16 09:02 7/8 � Adatbázisok története és fejlődése

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

összehasonlíthatók.
Példa: „melyik másik dokumentum tartalmilag hasonlít ehhez a kérdéshez?”

Hogyan működik?

Az objektumokat (pl. szöveg, kép) embedding-gé alakítjuk egy neurális háló segítségével.
Az így kapott vektorokat egy vektoradatbázis tárolja.
Keresés során szintén vektort képezünk, majd megkeressük a legközelebbi (használatos: k-NN
– *k Nearest Neighbors*) vektorokat.
A hasonlóságot általában koszinusz-hasonlóság, euklideszi távolság vagy más metrika
alapján számítják.

Jellemzők

Nincs klasszikus SQL – speciális API vagy Python/REST kliensek használatosak.
Beépített indexelési módszerek a gyors kereséshez (pl. HNSW, IVF, PQ).
Gyors és hatékony nagy dimenziójú adatok keresése.

Előnyök

Jelentésalapú keresés – szöveg vagy kép jelentésének megértése
Ideális LLM-alapú rendszerekhez, mint pl. kérdés-válasz vagy dokumentumkeresés
Kiváló teljesítmény nagy adathalmazokon is

Hátrányok

Nem hagyományos adatmodell – nem tárol klasszikus táblákat, kapcsolatokkal
A „miért kaptuk ezt a találatot?” kérdésre nehezebb választ adni (black-box jelleg)
A pontosság függ az embedding minőségétől és a választott metrikától

Népszerű vektor adatbázisok

FAISS (Facebook AI Similarity Search) – nagy teljesítményű, Python-könyvtárként is elérhető
Milvus – nyílt forráskódú, skálázható, GPU-t is támogató vektor DB
Weaviate – REST API + GraphQL támogatás, integrált gépi tanulási pipeline
Pinecone – felhőalapú, egyszerűen használható szolgáltatás
Chroma – egyszerű integráció LangChain/RAG rendszerekhez

Példa: vektoros keresés szövegek között

1. Szöveg → embedding: `“Milyen magas a Mount Everest?”` → `[0.12, -0.45, …, 0.33]` 2. A
vektoradatbázisban tárolt több ezer dokumentum embeddingje közül kiválasztjuk a legközelebbit:

query_vector = model.encode("Milyen magas a Mount Everest?")
results = vector_db.search(query_vector, top_k=5)

Last
update:
2025/05/07
06:55

tanszek:oktatas:muszaki_informatika:adattarolas_adatbazisok https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:adattarolas_adatbazisok?rev=1746600959

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:02

3. Eredmény: olyan dokumentumokat kapunk, amelyek tartalmilag legközelebb állnak a kérdéshez –
még akkor is, ha szó szerint nem egyeznek meg.

6. Tendenciák és jövőkép

Multimodális adatbázisok (szöveg + kép + struktúrált adatok)
Hybrid keresés: SQL + vektoros keresés együtt
AI-native rendszerek: LLM + adatbázis integráció (pl. LangChain)

7. Összefoglaló táblázat
Típus Példák Előnyök Hátrányok
Relációs
(RDBMS)

MySQL, PostgreSQL,
Oracle

Stabil, jól definiált séma, SQL
támogatás, ACID garancia

Nehezen skálázható,
rugalmatlan struktúra

NoSQL MongoDB, Redis,
Cassandra, Neo4j

Rugalmas séma, jól skálázható,
gyors lekérdezések

Gyenge konzisztencia, nincs
egységes lekérdezőnyelv

NewSQL CockroachDB, Google
Spanner, VoltDB

ACID + skálázhatóság, SQL-
kompatibilitás

Bonyolultabb architektúra,
kisebb ökoszisztéma

Vektor
FAISS, Milvus,
Weaviate, Pinecone,
Chroma

Jelentésalapú keresés, AI
integráció, gyors k-NN keresés

Nem klasszikus lekérdezések,
nehezebb magyarázhatóság

8. Demó

SQL lekérdezés vs. MongoDB lekérdezés
Szöveg → embedding → hasonló dokumentumok keresése vektor alapján

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:adattarolas_adatbazisok?rev=1746600959

Last update: 2025/05/07 06:55

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:adattarolas_adatbazisok?rev=1746600959

	📊 Adatbázisok története és fejlődése
	1. Bevezetés
	Miért van szükség adatbázisokra?
	Adat vs. információ
	Strukturált, félstrukturált és strukturálatlan adatok

	2. Relációs adatbázisok (RDBMS)
	Történet
	Jellemzők
	Előnyök
	Hátrányok
	Népszerű relációs adatbázis-kezelő rendszerek (RDBMS-ek)
	Példa: Egyszerű SQL tábla és lekérdezés

	3. NoSQL adatbázisok
	Miért jelentek meg?
	Jellemzők
	NoSQL típusok és példák
	Előnyök
	Hátrányok
	Példa: MongoDB dokumentum

	4. NewSQL adatbázisok
	Miért jöttek létre?
	Jellemzők
	Előnyök
	Hátrányok
	Példák
	Példa: CockroachDB SQL lekérdezés

	5. Vektor adatbázisok
	Miért van rájuk szükség?
	Hogyan működik?
	Jellemzők
	Előnyök
	Hátrányok
	Népszerű vektor adatbázisok
	Példa: vektoros keresés szövegek között

	6. Tendenciák és jövőkép
	7. Összefoglaló táblázat
	8. Demó

