
2025/10/25 13:31 1/8 Ellenőrző kérdések

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

1. feladat: Milyen hibákat talál az alábbi megoldásokban?

m = malloc(80);
m = NULL;

megoldás: 80 bájt lefoglalása, majd a pointer nullázása. Probléma: - a lefoglalt 80 byte nem szabadul
fel. m = NULL sor természetesen nullázza az m mutatót, de ettől még a 80 bájt lefoglalva marad.

Egy pointerhez memória lefoglalása majd amikor már nincs rá szükség, akkor a felszabadítása az
alábbi váz alapján valósítható meg.

m = malloc(80);
// számolás.. egyéb kódok
free(m);

Nézzük a következő hibás példát. Mi lehet a hiba?

free(n);
n = 5;

megoldás: felszabadított memóriaterületre akarunk írni. Ha már meghívtuk a free() memória
felszabadító függvényt, akkor nem lehet tovább használni a pointert. (ameddig a malloc()-al újra
foglalunk neki memóriát.)

A következő példában nem használunk dinamikus memóriafoglalást, ami elvileg még jó is lehet, de
mégsem szabályos. Miért?

char *p;
*p = 'a';

megoldás: nem inicializált pointert akarunk használni. Azaz a char *p, nem ad értéket a p
pointernek, csak helyet foglal neki, és azon a helyen 0 van, vagy valami memóriaszemét. Ha a
következő sorban a *p = 'a' -val a p által mutatott címre bele szeretnénk másolni a 'a'-t akkor az
nem lesz lehetséges, mert a 0-ás címre nem írhatunk.

Last
update:
2025/03/13
22:13

tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/25 13:31

Feladat:: foglaljunk le dinamikusan egy 10 elemű int vektort.

#include <stdlib.h>

int main() {
 int *v = (int *)malloc(1000 * sizeof(int));
 free(v);
 return 0;
}

A kód igazából nem csinál túl sok használhatót, csak demonstrálja a malloc() használatát. A
paramétere azt jelenti, hogy hány bájtot szeretnénk lefoglalni. Önmagában 1000-el meghívva csak
250 darab int értéknek foglal helyet, mert minden int 4 byte-ot foglal. Mivel ezt nem akarjuk fejből
tudni ezért használjuk a beépített sizeof() operátort, ami sizeof(int) esetén 4-et ad vissza.
Összefoglalva az 1000 int lefoglalásához 4000 byte-ok kell lefoglalni.

Feladat:: Az alábbi 3 függvényből melyik helyes, illetve hibás?

int* f(void)
{
 int x = 10;
 return (&x);
}
int* g(void)
{
 int * p;
 *p = 10;
 return p;
}
int* h(void)
{
 int *p;
 p = (int *) malloc (sizeof(int));
 return p;
}

megoldás: csak a h() függvény helyes. A f() és g() hibásak, mert ezekben az esetekben a
memóriacím a veremben jön létre és a visszaadott érték helytelen memóriacímre fog mutatni. Az f()
és g() esetén lokális változókat hozunk létre, és ezekre mutató memóriacímet adunk vissza. A
függvény használatakor, a használat után ezek a memóriacímek nem használhatók tovább. A h()
esetén is a p változó lokális lesz, az is megszűnik a függvény használata után, de a malloc() által

2025/10/25 13:31 3/8 Ellenőrző kérdések

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

visszaadott memória cím (mint számérték továbbra is használható) a return p itt is nem a p-t,
hanem a p-ben tárolt címet adja vissza, ami a h() esetén továbbra is használható.

A példa azt mutatja, hogy a malloc() által létrehozott cím és a mögötte lefoglalt memória globális,
nem számít hol hívtuk meg.

Feladat:: Mi lesz az alábbi program kimenete?

#include<stdio.h>

void f(int *a)
{
 a = (int*)malloc(sizeof(int));
}

int main()
{
 int *p;
 f(p);
 *p = 10;
 printf("%d",*p);
}

megoldás: nem ír ki semmit, hanem lefagy.

Feladat:: Hogyan lehetne kijavítani az előző feladatban szereplő programot?

megoldás: az előző program azért nem működik, mert a pointer nincs inicializálva (csak egy
másolat), ezért a 0-s memóriacímet adja át az f() függvénynek, így a malloc lefoglalja a 4 byte-ot, de
hibás helyre írja vissza. A javítás során vegyük figyelembe, hogy egy pointerre mutató pointer már
ténylegesen a p változó címét adja vissza, amibe már a f() malloc()-ja már be tudja írni a lefoglalt
memória címét.

#include<stdio.h>

void f(int **a)
{
 a = (int)malloc(sizeof(int));
}

int main()
{
 int *p;

Last
update:
2025/03/13
22:13

tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/25 13:31

 f(&p);
 *p = 10;
 printf("%d",*p);
}

Feladat:: Mi a probléma következő programmal?

#include<stdio.h>

int main()
{
 float *p = (float *)malloc(sizeof(float));
 p = NULL;

 free(p);
}

megoldás: a p NULL-ázása után, a free() nem tudja, hogy hol van az a memóriacím, amit fel kell
szabadítani, a free() igazából nem egy változót magát, hanem a benne tárolt memória címet (mint
számértékhez tartozó foglalást) szünteti meg.) Más szóval: a free() nem a p változót, hanem az abban
tárolt címet szabadítja fel.

Ellenőrző kérdések

Mi a helyes deklarációja egy int típusra mutató pointernek?

A) int p*;
B) int *p;
C) pointer int p;
D) int &p;

Megoldás: B

Hogyan lehet helyesen lefoglalni memóriát egy 10 elemű int tömbnek dinamikusan?

A) int *arr = malloc(10);
B) int arr = malloc(10 * sizeof(int));
C) int *arr = malloc(10 * sizeof(int));
D) int arr[10] = malloc(sizeof(int));

Helyes válasz: C

2025/10/25 13:31 5/8 Ellenőrző kérdések

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Mi lesz az eredmény?

int array[] = {100, 200, 300};
int *ptr = array;
printf("%d", *(ptr++));
printf("%d", *ptr);

A) 100200
B) 200300
C) 100100
D) 200200

Megoldás: A. *(ptr++) előbb kiírja a 100-at, majd eggyel tovább lépteti a pointert. A következő kiírás
már a 200-ra mutat.

Melyik állítás igaz az alábbiak közül?

A) Egy pointer típusa nem függ attól, hogy milyen adatra mutat.
B) Egy pointer mindig egész számot tárol.
C) Pointerek aritmetikája nem megengedett C-ben.
D) Egy pointer típusa meghatározza, hogy milyen típusú adatot érhetünk el
rajta keresztül.

Helyes válasz: D

Mi lesz az eredmény?

int x = 5, y = 10;
int *p = &x;
int *q = &y;
*p = *q;
printf("%d %d", x, y);

A) 5 10
B) 10 10
C) 5 5
D) 10 5

Helyes válasz: B.

Last
update:
2025/03/13
22:13

tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/25 13:31

Mire mutat a p pointer a következő deklaráció után?

int arr[10];
int *p = arr;

A) Az arr tömb első elemére
B) Az arr tömb utolsó elemére
C) Az arr tömb méretére
D) Véletlenszerű memória címre

Megoldás: A

Mi a hiba a következő kódrészletben?

int num = 20;
int *ptr;
*ptr = num;

A) Érvénytelen pointer-dereferencia (nem inicializált pointer)
B) Szintaktikai hiba
C) Hiányzó pontosvessző
D) A num változó helytelen típusa

Megoldás: A

Mi lesz a következő kód kimenete?

char *str = "Hello";
printf("%c", *(str+1));

A) H
B) e
C) l
D) o

Megoldás: B

2025/10/25 13:31 7/8 Ellenőrző kérdések

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Mit jelent, ha egy pointer NULL értékű?

A) A pointer érvényes memória címre mutat
B) A pointer egy egész számot tárol
C) A pointer nem mutat érvényes memória címre
D) A pointer konstans értékre mutat

Megoldás: C

Mi lesz a következő kód kimenete?

int a[] = {2, 4, 6, 8};
int *p = a;
printf("%d", *(p + 2));

A) 2
B) 4
C) 6
D) 8

Megoldás: C

Melyik operátor adja vissza egy változó memória-címét?

A) *
B) &
C) %
D) #

Megoldás: B

Mit ír ki a következő programrészlet?

int x = 5;
int *p = &x;
*p = 10;
printf("%d", x);

Last
update:
2025/03/13
22:13

tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben

https://edu.iit.uni-miskolc.hu/ Printed on 2025/10/25 13:31

A) 5
B) 0
C) 10
D) véletlenszerű érték

Megoldás: C , mivel az x értéke megváltozik a pointeren keresztül

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben

Last update: 2025/03/13 22:13

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben

	[Ellenőrző kérdések]
	Ellenőrző kérdések

