
2026/02/16 09:05 1/4 Ellenőrző kérdések

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

1. feladat: Milyen hibákat talál az alábbi megoldásokban?

m = malloc(80);
m = NULL;

megoldás: 80 bájt lefoglalása, majd a pointer nullázása. Probléma: - a lefoglalt 80 byte nem szabadul
fel. m = NULL sor természetesen nullázza az m mutatót, de ettől még a 80 bájt lefoglalva marad.

Egy pointerhez memória lefoglalása majd amikor már nincs rá szükség, akkor a felszabadítása az
alábbi váz alapján valósítható meg.

m = malloc(80);
// számolás.. egyéb kódok
free(m);

Nézzük a következő hibás példát. Mi lehet a hiba?

free(n);
n = 5;

megoldás: felszabadított memóriaterületre akarunk írni. Ha már meghívtuk a free() memória
felszabadító függvényt, akkor nem lehet tovább használni a pointert. (ameddig a malloc()-al újra
foglalunk neki memóriát.)

A következő példában nem használunk dinamikus memóriafoglalást, ami elvileg még jó is lehet, de
mégsem szabályos. Miért?

char *p;
*p = 'a';

megoldás: nem inicializált pointert akarunk használni. Azaz a char *p, nem ad értéket a p
pointernek, csak helyet foglal neki, és azon a helyen 0 van, vagy valami memóriaszemét. Ha a
következő sorban a *p = 'a' -val a p által mutatott címre bele szeretnénk másolni a 'a'-t akkor az
nem lesz lehetséges, mert a 0-ás címre nem írhatunk.

Last
update:
2025/03/12
19:06

tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben?rev=1741806379

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:05

Feladat:: foglaljunk le dinamikusan egy 10 elemű int vektort.

#include <stdlib.h>

int main() {
 int *v = (int *)malloc(1000 * sizeof(int));
 free(v);
 return 0;
}

A kód igazából nem csinál túl sok használhatót, csak demonstrálja a malloc() használatát. A
paramétere azt jelenti, hogy hány bájtot szeretnénk lefoglalni. Önmagában 1000-el meghívva csak
250 darab int értéknek foglal helyet, mert minden int 4 byte-ot foglal. Mivel ezt nem akarjuk fejből
tudni ezért használjuk a beépített sizeof() operátort, ami sizeof(int) esetén 4-et ad vissza.
Összefoglalva az 1000 int lefoglalásához 4000 byte-ok kell lefoglalni.

Feladat:: Az alábbi 3 függvényből melyik helyes, illetve hibás?

int* f(void)
{
 int x = 10;
 return (&x);
}
int* g(void)
{
 int * p;
 *p = 10;
 return p;
}
int* h(void)
{
 int *p;
 p = (int *) malloc (sizeof(int));
 return p;
}

megoldás: csak a h() függvény helyes. A f() és g() hibásak, mert ezekben az esetekben a
memóriacím a veremben jön létre és a visszaadott érték helytelen memóriacímre fog mutatni. Az f()
és g() esetén lokális változókat hozunk létre, és ezekre mutató memóriacímet adunk vissza. A
függvény használatakor, a használat után ezek a memóriacímek nem használhatók tovább. A h()
esetén is a p változó lokális lesz, az is megszűnik a függvény használata után, de a malloc() által

2026/02/16 09:05 3/4 Ellenőrző kérdések

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

visszaadott memória cím (min számérték továbbra is használható) a return p itt is nem a p-t,
hanem a p-ben tárolt címet adja vissza, ami a h() esetén továbbra is használható.

A példa azt mutatja, hogy a malloc() által létrehozott cím és a mögötte lefoglalt memória globális,
nem számít hol hívtuk meg.

Feladat:: Mi lesz az alábbi program kimenete?

#include<stdio.h>

void f(int *a)
{
 a = (int*)malloc(sizeof(int));
}

int main()
{
 int *p;
 f(p);
 *p = 10;
 printf("%d",*p);
}

megoldás: nem ír ki semmit, hanem lefagy.

Feladat:: Hogyan lehetne kijavítani az előző feladatban szereplő programot?

megoldás: az előző program azért nem működik, mert a pointer nincs inicializálva (csak egy
másolat), ezért a 0-s memóriacímet adja át az f() függvénynek, így a malloc lefoglalja a 4 byte-ot, de
hibás helyre írja vissza. A javítás során vegyük figyelembe, hogy egy pointerre mutató pointer már
ténylegesen a p változó címét adja vissza, amibe már a f() malloc()-ja már be tudja írni a lefoglalt
memória címét.

#include<stdio.h>

void f(int **a)
{
 a = (int)malloc(sizeof(int));
}

int main()
{
 int *p;

Last
update:
2025/03/12
19:06

tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben?rev=1741806379

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/16 09:05

 f(&p);
 *p = 10;
 printf("%d",*p);
}

Feladat:: Mi a probléma következő programmal?

#include<stdio.h>

int main()
{
 float *p = (float *)malloc(sizeof(float));
 p = NULL;

 free(p);
}

megoldás: a p NULL-ázása után, a free() nem tudja, hogy hol van az a memóriacím, amit fel kell
szabadítani. A free() nem a p változót, hanem az abban tárolt címet szabadítja fel.

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben?rev=1741806379

Last update: 2025/03/12 19:06

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:muszaki_informatika:memoria_kezeles_c-ben?rev=1741806379

