2026/02/06 11:45 1/6 1. Fokusz

A TDD (Test-Driven Development) és a BDD (Behavior-Driven Development) két népszer(
fejlesztési mddszer, amelyek tesztelési folyamatokra épitenek, de eltérd szemlélettel és
célkitlizésekkel.

F6 kllonbségek:

1. Fokusz

e TDD (Test-Driven Development):

o ATDD ko6zéppontjaban a kéd implementacioja all. A cél az, hogy a fejleszt6 eldre
megirja a teszteket a kdd implementalasa eldtt, majd a tesztek alapjan hozza létre a
funkcidkat. A TDD alacsonyabb szintl tesztekre (pl. unit tesztekre) 6sszpontosit, amelyek
konkrét kodrészleteket vizsgalnak.

o ATDD lépései:

= 1. irj egy tesztet (amely el8szor el fog bukni).
= 2. ird meg a kédot, hogy a teszt sikeres legyen.
» 3, Refaktorald a kddot, ha sziikséges.

* BDD (Behavior-Driven Development):

o A BDD a viselkedésre 6sszpontosit, azaz arra, hogy a rendszernek hogyan kell
viselkednie a felhasznalé szempontjabdl. A tesztek a rendszer viselkedését irjak le, nem
pedig a kdd részleteit. A BDD teszteket természetes nyelv kozeli, mindenki altal érthet6
formaban irjak meg, gyakran felhasznalva a Gherkin szintaxist ('Given™, "When", "Then
struktUraban).

o A BDD célja az uzleti elemzdk, fejleszték és tesztel6k kozotti egyuttmiikodés
eldsegitése, hogy minden érintett jobban megértse a rendszer elvart viselkedését.

2. Szint

e TDD:
o Féként alacsony szint((unit tesztek) tesztelésre dsszpontosit. A tesztek a kddrészletek
helyes miikodését ellendrzik.
e BDD:
o Magasabb szint(tesztelés, amely a rendszer viselkedését vizsgalja, példaul hogyan
reagal bizonyos felhasznaldi interakcidkra vagy uzleti folyamatokra.

3. Szemléletmodd

e TDD:
o A kédtervezés teszt-alapu. A fejleszt6 eldszor tesztet ir, majd ehhez igazitja a kédot. A
TDD soran a fejleszt6k inkabb a funkcidk implementdalasara és a kod helyességére
koncentralnak.
e BDD:
o Atervezés viselkedés-alapu. A tesztek a rendszer altal elvart viselkedést irjak le, tehat
a felhasznaldi éiményt és (izleti igényeket helyezik elétérbe.

4. Nyelvezet

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last update: 2024/10/12 11:06 tanszek:oktatas:tdd_es_bdd https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728731209

e TDD:
o Teszteket gyakran programozasi nyelveken irjdk meg, amelyeket elsésorban a fejleszték
értenek. Példaul egy TDD teszt Pythonban, JUnitban stb. irédik.
» BDD:
o A teszteket emberi nyelven kézeli médon fogalmazzak meg, igy nemcsak fejleszték,
hanem Uzleti elemz8k és mas érintettek is megértik. A Gherkin szintaxis egy példa erre:

Given the user is on the login page
When they enter valid credentials
Then they should be logged in successfully

Példa

A nullardl indulunk, 1épésenként bemutatjuk a médszert.
1. Projekt inicializalasa

Elészor hozzunk létre egy Uj projekt konyvtarat, és inicializald a Node.js projektet.

mkdir tdd-project
cd tdd-project
npm init -y

Ez létrehoz egy alap package.json fjjlt.
2. Fuggoségek telepitése

Telepitsiik a sziikséges fejlesztdi fliggdségeket: Mocha a teszteléshez, Chai az asszertalasokhoz, és
Sinon a mockolashoz és stuboldshoz. Mivel a projektben jelszd hash-elésre is szlikség lesz, telepitiik
a berypt konyvtarat is.

npm install mocha chai sinon bcrypt --save-dev
3. Mappastruktura létrehozasa

Hozzuk létre a sziikséges mappakat és fajlokat a projekt szerkezetéhez.

mkdir test
mkdir services

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/06 11:45

2026/02/06 11:45 3/6 1. Fékusz

mkdir repositories

touch test/userService.test.js

touch services/userService.js

touch repositories/userRepository.js

Most a projekt struktiraja igy néz majd ki:

tdd-project/

— test/
L— userService.test.js // Tesztek a UserService-hez
— services/
L— userService.js // UserService osztaly
— repositories/
L — userRepository.js // UserRepository osztaly
L package.json // Node.js projekt leird fajl

4. Mocha konfiguralasa

A Mocha futtatasahoz a “package.json” fajlban hozza kell adni egy részt, amely a "mocha” parancsot
futtatja a "test’ mappaban

Nyissuk meg a “package.json’ fjlt, és addjuk hozza a “scripts’ részhez a kovetkez6t:

““json “scripts”: {

"test": "mocha"

5. Tesztek irasa (TDD maddszerrel)

Most kezdhetjik a TDD folyamatot: el6szor a teszteket irdjuk meg. Példaul a userService.test.js
fajlba irjuk a kovetkez6 teszteket:

const assert = require(‘'assert');

const sinon = require('sinon');

const bcrypt = require('bcrypt');

const UserRepository = require('../repositories/userRepository');
const UserService = require('../services/userService');

describe('UserService', function() {
let userService;

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last update: 2024/10/12 11:06 tanszek:oktatas:tdd_es_bdd https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728731209

let userRepositoryStub;

beforeEach(function() {
userRepositoryStub = sinon.stub(UserRepository.prototype,
'findUserByEmail');
userService = new UserService(new UserRepository());

});

afterEach(function() {
sinon.restore();

)

it('should return error if email is already in use', async function() {
userRepositoryStub.resolves({ email: 'existing@example.com' });

const result = await userService.registerUser('existing@example.com',
'passwordl23');
assert.strictEqual(result.success, false);
assert.strictEqual(result.message, 'Email already in use');
});

it('should hash the password and register user if email is not taken',
async function() {
userRepositoryStub.resolves(null);
const bcryptStub = sinon.stub(bcrypt,
‘hash').resolves('hashedPassword');
const result = await userService.registerUser('newuser@example.com',
'plainPassword');
assert.strictEqual(bcryptStub.calledOnce, true);
assert.strictEqual(bcryptStub.calledWith('plainPassword'), true);
assert.strictEqual(result.success, true);
assert.strictEqual(result.message, 'User registered successfully');
1)
1)

6. Tesztek futtatasa

Futtasd a Mocha teszteket, hogy megbizonyosod;j arrél, hogy a tesztek elbuknak (mivel még nem irtad
meg a tényleges implementaciot).

“““bash npm test "

Ez a parancs futtatja @ "'mocha’ parancsot, amely végigmegy a "test™ mappaban |évl teszteken.
Mivel a "UserService™ és “UserRepository” még nem implementalt, a tesztek elbuknak, ami a TDD
modszer l1ényege: el6szor a tesztek buknak el, majd az implementacié kdvetkezik.

7. Implementdcié megirasa

Most ird meg a tényleges kddot a tesztek sikeressé tételéhez.

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/06 11:45

2026/02/06 11:45 5/6 1. Fékusz

userRepository.js :

" javascript repositories/userRepository.js class UserRepository { constructor() { this.users = [];
Szimulalt adatbazis tombként

}

}

// Felhaszndldé keresése e-mail alapjan

async findUserByEmail(email) {
const user = this.users.find(user => user.email === email);
return user || null;

}

// Uj felhaszndld mentése az adatbdzisba
async saveUser(user) {
this.users.push(user);
return user;

module.exports = UserRepository; **°

" userService.js :

" javascript services/userService.js const bcrypt = require(‘bcrypt'); class UserService {
constructor(userRepository) { this.userRepository = userRepository; } Felhasznalé regisztralasa

}

async registerUser(email, password) {
// Ellen6rizziik, hogy létezik-e mar a felhasznald az e-mail alapjan

const existingUser = await this.userRepository.findUserByEmail (email);

if (existingUser) {
return { success: false, message: 'Email already in use' };

}

// Hash-eljik a jelszét
const hashedPassword = await bcrypt.hash(password, 10);

// Uj felhasznaldé létrehozasa
const newUser = { email, password: hashedPassword };

// Felhaszndld mentése
await this.userRepository.saveUser(newUser);

return { success: true, message: 'User registered successfully' };

module.exports = UserService;

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last update: 2024/10/12 11:06 tanszek:oktatas:tdd_es_bdd https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728731209

##4# 8. Tesztek ujrafuttatasa

Most futtasd Ujra a teszteket:

“““bash npm test "

Most a teszteknek sikeresen at kell menniik, mivel az implementacié megfelel a tesztek elvarasainak.
9. Tovabbi tesztek és fejlesztés

A TDD ciklusban a kovetkezd 1épés az Ujabb tesztek irdsa Uj funkcidkra, majd a funkcidk
implementalasa annak érdekében, hogy a tesztek mindig megfeleljenek. A TDD ciklus harom Iépése a
kovetkezd: 1. Teszt irasa (a teszt el fog bukni). 2. Implementdcid irdsa (hogy a teszt atmenjen). 3.
Refaktoralas (a kdd minéségének javitasa a teszt sikerességének megtartasaval).

Ezzel a mddszerrel mindig biztos lehetsz abban, hogy a kéd megfelel a tesztelt kovetelményeknek.

From:

https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of [w] " [w]
Miskolc o v =T
Permanent link: % u
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728731209 .

[x]

Last update: 2024/10/12 11:06

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/06 11:45

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728731209

	[1. Fókusz]
	[1. Fókusz]
	1. Fókusz
	2. Szint
	3. Szemléletmód
	4. Nyelvezet

	Példa
	1. Projekt inicializálása
	2. Függőségek telepítése
	3. Mappastruktúra létrehozása
	4. Mocha konfigurálása
	5. Tesztek írása (TDD módszerrel)
	6. Tesztek futtatása

