
2026/02/06 11:45 1/6 1. Fókusz

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

A TDD (Test-Driven Development) és a BDD (Behavior-Driven Development) két népszerű
fejlesztési módszer, amelyek tesztelési folyamatokra építenek, de eltérő szemlélettel és
célkitűzésekkel.

Fő különbségek:

1. Fókusz

TDD (Test-Driven Development):
A TDD középpontjában a kód implementációja áll. A cél az, hogy a fejlesztő előre
megírja a teszteket a kód implementálása előtt, majd a tesztek alapján hozza létre a
funkciókat. A TDD alacsonyabb szintű tesztekre (pl. unit tesztekre) összpontosít, amelyek
konkrét kódrészleteket vizsgálnak.
A TDD lépései:

1. Írj egy tesztet (amely először el fog bukni).
2. Írd meg a kódot, hogy a teszt sikeres legyen.
3. Refaktoráld a kódot, ha szükséges.

BDD (Behavior-Driven Development):
A BDD a viselkedésre összpontosít, azaz arra, hogy a rendszernek hogyan kell
viselkednie a felhasználó szempontjából. A tesztek a rendszer viselkedését írják le, nem
pedig a kód részleteit. A BDD teszteket természetes nyelv közeli, mindenki által érthető
formában írják meg, gyakran felhasználva a Gherkin szintaxist (`Given`, `When`, `Then`
struktúrában).
A BDD célja az üzleti elemzők, fejlesztők és tesztelők közötti együttműködés
elősegítése, hogy minden érintett jobban megértse a rendszer elvárt viselkedését.

2. Szint

TDD:
Főként alacsony szintű (unit tesztek) tesztelésre összpontosít. A tesztek a kódrészletek
helyes működését ellenőrzik.

BDD:
Magasabb szintű tesztelés, amely a rendszer viselkedését vizsgálja, például hogyan
reagál bizonyos felhasználói interakciókra vagy üzleti folyamatokra.

3. Szemléletmód

TDD:
A kódtervezés teszt-alapú. A fejlesztő először tesztet ír, majd ehhez igazítja a kódot. A
TDD során a fejlesztők inkább a funkciók implementálására és a kód helyességére
koncentrálnak.

BDD:
A tervezés viselkedés-alapú. A tesztek a rendszer által elvárt viselkedést írják le, tehát
a felhasználói élményt és üzleti igényeket helyezik előtérbe.

4. Nyelvezet

Last update: 2024/10/12 11:09 tanszek:oktatas:tdd_es_bdd https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728731381

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/06 11:45

TDD:
Teszteket gyakran programozási nyelveken írják meg, amelyeket elsősorban a fejlesztők
értenek. Például egy TDD teszt Pythonban, JUnitban stb. íródik.

BDD:
A teszteket emberi nyelven közeli módon fogalmazzák meg, így nemcsak fejlesztők,
hanem üzleti elemzők és más érintettek is megértik. A Gherkin szintaxis egy példa erre:

 Given the user is on the login page
 When they enter valid credentials
 Then they should be logged in successfully

Példa

A nulláról indulunk, lépésenként bemutatjuk a módszert.

1. Projekt inicializálása

Először hozzunk létre egy új projekt könyvtárat, és inicializáld a Node.js projektet.

mkdir tdd-project
cd tdd-project
npm init -y

Ez létrehoz egy alap package.json fájlt.

2. Függőségek telepítése

Telepítsük a szükséges fejlesztői függőségeket: Mocha a teszteléshez, Chai az asszertálásokhoz, és
Sinon a mockoláshoz és stuboláshoz. Mivel a projektben jelszó hash-elésre is szükség lesz, telepítük
a bcrypt könyvtárat is.

npm install mocha chai sinon bcrypt --save-dev

3. Mappastruktúra létrehozása

Hozzuk létre a szükséges mappákat és fájlokat a projekt szerkezetéhez.

mkdir test
mkdir services

2026/02/06 11:45 3/6 1. Fókusz

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

mkdir repositories
ni ./test/userService.test.js
ni ./services/userService.js
ni ./repositories/userRepository.js

megjegyzés: az ni parancs powershell-ben a linuxos touch parancs megfelelője.

Most a projekt struktúrája így néz majd ki:

tdd-project/
│
├── test/
│ └── userService.test.js // Tesztek a UserService-hez
│
├── services/
│ └── userService.js // UserService osztály
│
├── repositories/
│ └── userRepository.js // UserRepository osztály
│
└── package.json // Node.js projekt leíró fájl

4. Mocha konfigurálása

A Mocha futtatásához a `package.json` fájlban hozzá kell adni egy részt, amely a `mocha` parancsot
futtatja a `test` mappában:

Nyissuk meg a `package.json` fájlt, és addjuk hozzá a `scripts` részhez a következőt:

```json “scripts”: {

"test": "mocha"

} ```

5. Tesztek írása (TDD módszerrel)

Most kezdhetjük a TDD folyamatot: először a teszteket írdjuk meg. Például a userService.test.js
fájlba írjuk a következő teszteket:

const assert = require('assert');
const sinon = require('sinon');
const bcrypt = require('bcrypt');
const UserRepository = require('../repositories/userRepository');
const UserService = require('../services/userService');

describe('UserService', function() {



Last update: 2024/10/12 11:09 tanszek:oktatas:tdd_es_bdd https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728731381

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/06 11:45

  let userService;
  let userRepositoryStub;

  beforeEach(function() {
    userRepositoryStub = sinon.stub(UserRepository.prototype,
'findUserByEmail');
    userService = new UserService(new UserRepository());
  });

  afterEach(function() {
    sinon.restore();
  });

  it('should return error if email is already in use', async function() {
    userRepositoryStub.resolves({ email: 'existing@example.com' });

    const result = await userService.registerUser('existing@example.com',
'password123');
    assert.strictEqual(result.success, false);
    assert.strictEqual(result.message, 'Email already in use');
  });

  it('should hash the password and register user if email is not taken',
async function() {
    userRepositoryStub.resolves(null);
    const bcryptStub = sinon.stub(bcrypt,
'hash').resolves('hashedPassword');
    const result = await userService.registerUser('newuser@example.com',
'plainPassword');
    assert.strictEqual(bcryptStub.calledOnce, true);
    assert.strictEqual(bcryptStub.calledWith('plainPassword'), true);
    assert.strictEqual(result.success, true);
    assert.strictEqual(result.message, 'User registered successfully');
  });
});

6. Tesztek futtatása

Futtasd a Mocha teszteket, hogy megbizonyosodj arról, hogy a tesztek elbuknak (mivel még nem írtad
meg a tényleges implementációt).

```bash npm test ```

Ez a parancs futtatja a `mocha` parancsot, amely végigmegy a `test` mappában lévő teszteken.
Mivel a `UserService` és `UserRepository` még nem implementált, a tesztek elbuknak, ami a TDD
módszer lényege: először a tesztek buknak el, majd az implementáció következik.

7. Implementáció megírása

Most írd meg a tényleges kódot a tesztek sikeressé tételéhez.

2026/02/06 11:45 5/6 1. Fókusz

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

`userRepository.js`:

```javascript repositories/userRepository.js class UserRepository { constructor() { this.users = [];
Szimulált adatbázis tömbként

  }

  // Felhasználó keresése e-mail alapján
  async findUserByEmail(email) {
      const user = this.users.find(user => user.email === email);
      return user || null;
  }

  // Új felhasználó mentése az adatbázisba
  async saveUser(user) {
      this.users.push(user);
      return user;
  }

}

module.exports = UserRepository; ```

#### `userService.js`:

```javascript services/userService.js const bcrypt = require('bcrypt'); class UserService {
constructor(userRepository) { this.userRepository = userRepository; } Felhasználó regisztrálása

 async registerUser(email, password) {
 // Ellenőrizzük, hogy létezik-e már a felhasználó az e-mail alapján
 const existingUser = await this.userRepository.findUserByEmail(email);
 if (existingUser) {
 return { success: false, message: 'Email already in use' };
 }

 // Hash-eljük a jelszót
 const hashedPassword = await bcrypt.hash(password, 10);

 // Új felhasználó létrehozása
 const newUser = { email, password: hashedPassword };

 // Felhasználó mentése
 await this.userRepository.saveUser(newUser);

 return { success: true, message: 'User registered successfully' };
 }

}

module.exports = UserService; ```

Last update: 2024/10/12 11:09 tanszek:oktatas:tdd_es_bdd https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728731381

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/06 11:45

8. Tesztek újrafuttatása

Most futtasd újra a teszteket:

```bash npm test ```

Most a teszteknek sikeresen át kell menniük, mivel az implementáció megfelel a tesztek elvárásainak.

### 9. További tesztek és fejlesztés

A TDD ciklusban a következő lépés az újabb tesztek írása új funkciókra, majd a funkciók
implementálása annak érdekében, hogy a tesztek mindig megfeleljenek. A TDD ciklus három lépése a
következő: 1. Teszt írása (a teszt el fog bukni). 2. Implementáció írása (hogy a teszt átmenjen). 3.
Refaktorálás (a kód minőségének javítása a teszt sikerességének megtartásával).

Ezzel a módszerrel mindig biztos lehetsz abban, hogy a kód megfelel a tesztelt követelményeknek.

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of
Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728731381

Last update: 2024/10/12 11:09

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728731381

	[1. Fókusz]
	[1. Fókusz]
	1. Fókusz
	2. Szint
	3. Szemléletmód
	4. Nyelvezet

	Példa
	1. Projekt inicializálása
	2. Függőségek telepítése
	3. Mappastruktúra létrehozása
	4. Mocha konfigurálása
	5. Tesztek írása (TDD módszerrel)
	6. Tesztek futtatása



