
2026/02/06 11:45 1/8 1. Fókusz

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

A TDD (Test-Driven Development) és a BDD (Behavior-Driven Development) két népszerű
fejlesztési módszer, amelyek tesztelési folyamatokra építenek, de eltérő szemlélettel és
célkitűzésekkel.

Fő különbségek:

1. Fókusz

TDD (Test-Driven Development):
A TDD középpontjában a kód implementációja áll. A cél az, hogy a fejlesztő előre
megírja a teszteket a kód implementálása előtt, majd a tesztek alapján hozza létre a
funkciókat. A TDD alacsonyabb szintű tesztekre (pl. unit tesztekre) összpontosít, amelyek
konkrét kódrészleteket vizsgálnak.
A TDD lépései:

1. Írj egy tesztet (amely először el fog bukni).
2. Írd meg a kódot, hogy a teszt sikeres legyen.
3. Refaktoráld a kódot, ha szükséges.

BDD (Behavior-Driven Development):
A BDD a viselkedésre összpontosít, azaz arra, hogy a rendszernek hogyan kell
viselkednie a felhasználó szempontjából. A tesztek a rendszer viselkedését írják le, nem
pedig a kód részleteit. A BDD teszteket természetes nyelv közeli, mindenki által érthető
formában írják meg, gyakran felhasználva a Gherkin szintaxist (`Given`, `When`, `Then`
struktúrában).
A BDD célja az üzleti elemzők, fejlesztők és tesztelők közötti együttműködés
elősegítése, hogy minden érintett jobban megértse a rendszer elvárt viselkedését.

2. Szint

TDD:
Főként alacsony szintű (unit tesztek) tesztelésre összpontosít. A tesztek a kódrészletek
helyes működését ellenőrzik.

BDD:
Magasabb szintű tesztelés, amely a rendszer viselkedését vizsgálja, például hogyan
reagál bizonyos felhasználói interakciókra vagy üzleti folyamatokra.

3. Szemléletmód

TDD:
A kódtervezés teszt-alapú. A fejlesztő először tesztet ír, majd ehhez igazítja a kódot. A
TDD során a fejlesztők inkább a funkciók implementálására és a kód helyességére
koncentrálnak.

BDD:
A tervezés viselkedés-alapú. A tesztek a rendszer által elvárt viselkedést írják le, tehát
a felhasználói élményt és üzleti igényeket helyezik előtérbe.

4. Nyelvezet

Last update: 2024/10/12 12:38 tanszek:oktatas:tdd_es_bdd https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728736688

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/06 11:45

TDD:
Teszteket gyakran programozási nyelveken írják meg, amelyeket elsősorban a fejlesztők
értenek. Például egy TDD teszt Pythonban, JUnitban stb. íródik.

BDD:
A teszteket emberi nyelven közeli módon fogalmazzák meg, így nemcsak fejlesztők,
hanem üzleti elemzők és más érintettek is megértik. A Gherkin szintaxis egy példa erre:

 Given the user is on the login page
 When they enter valid credentials
 Then they should be logged in successfully

Példa

A nulláról indulunk, lépésenként bemutatjuk a módszert.

1. Projekt inicializálása

Először hozzunk létre egy új projekt könyvtárat, és inicializáld a Node.js projektet.

mkdir tdd-project
cd tdd-project
npm init -y

Ez létrehoz egy alap package.json fájlt.

2. Függőségek telepítése

Telepítsük a szükséges fejlesztői függőségeket: Mocha a teszteléshez, Chai az asszertálásokhoz, és
Sinon a mockoláshoz és stuboláshoz. Mivel a projektben jelszó hash-elésre is szükség lesz, telepítük
a bcrypt könyvtárat is.

npm install mocha chai sinon bcrypt --save-dev

3. Mappastruktúra létrehozása

Hozzuk létre a szükséges mappákat és fájlokat a projekt szerkezetéhez.

mkdir test
mkdir services

2026/02/06 11:45 3/8 1. Fókusz

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

mkdir repositories
ni ./test/userService.test.js
ni ./services/userService.js
ni ./repositories/userRepository.js

megjegyzés: az ni parancs powershell-ben a linuxos touch parancs megfelelője.

Most a projekt struktúrája így néz majd ki:

tdd-project/
│
├── test/
│ └── userService.test.js // Tesztek a UserService-hez
│
├── services/
│ └── userService.js // UserService osztály
│
├── repositories/
│ └── userRepository.js // UserRepository osztály
│
└── package.json // Node.js projekt leíró fájl

Létrejött három üres állomány.

4. Mocha konfigurálása

A Mocha futtatásához a package.json fájlban hozzá kell adni egy részt, amely a mocha parancsot
futtatja a test mappában:

Nyissuk meg a package.json fájlt, és addjuk hozzá a scripts részhez a következőt:

"type": "module",
"scripts": {
 "test": "mocha"
}

5. Tesztek írása (TDD módszerrel)

Most kezdhetjük a TDD folyamatot: először a teszteket írdjuk meg. Például a
userRepository.test.js fájlba írjuk a következő teszteket:

import assert from 'assert';
import UserRepository from '../repositories/userRepository.js';

describe('UserRepository', function() {

Last update: 2024/10/12 12:38 tanszek:oktatas:tdd_es_bdd https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728736688

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/06 11:45

 let userRepository;

 beforeEach(function() {
 userRepository = new UserRepository();
 });

 it('should return null if user is not found by email', async function() {
 const user = await
userRepository.findUserByEmail('notfound@example.com');
 assert.strictEqual(user, null);
 });

 it('should save a user and retrieve it by email', async function() {
 const newUser = { email: 'test@example.com', password: 'hashedPassword'
};
 await userRepository.saveUser(newUser);
 const foundUser = await
userRepository.findUserByEmail('test@example.com');
 assert.strictEqual(foundUser.email, 'test@example.com');
 assert.strictEqual(foundUser.password, 'hashedPassword');
 });

 it('should handle saving multiple users', async function() {
 const user1 = { email: 'user1@example.com', password: 'password1' };
 const user2 = { email: 'user2@example.com', password: 'password2' };

 await userRepository.saveUser(user1);
 await userRepository.saveUser(user2);

 const foundUser1 = await
userRepository.findUserByEmail('user1@example.com');
 const foundUser2 = await
userRepository.findUserByEmail('user2@example.com');

 assert.strictEqual(foundUser1.email, 'user1@example.com');
 assert.strictEqual(foundUser2.email, 'user2@example.com');
 });
});

6. Tesztek futtatása

Futtasd a Mocha teszteket, hogy megbizonyosodj arról, hogy a tesztek elbuknak (mivel még nem írtad
meg a tényleges implementációt).

npm test

Ez a parancs futtatja a mocha parancsot, amely végigmegy a test mappában lévő teszteken. Mivel a

2026/02/06 11:45 5/8 1. Fókusz

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

UserRepository még nem implementált, a tesztek elbuknak, ami a TDD módszer lényege: először a
tesztek buknak el, majd az implementáció következik.

7. Implementáció megírása

Most írd meg a tényleges kódot a tesztek sikeressé tételéhez.

userRepository.js:

// repositories/userRepository.js

class UserRepository {
 constructor() {
 this.users = []; // Szimulált adatbázis tömbként
 }

 // Felhasználó keresése e-mail alapján
 async findUserByEmail(email) {
 const user = this.users.find(user => user.email === email);
 return user || null;
 }

 // Új felhasználó mentése az adatbázisba
 async saveUser(user) {
 this.users.push(user);
 return user;
 }
}

export default UserRepository;

8. Tesztek újrafuttatása

Most futtassuk újra a teszteket:

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:pasted:20241012-113656.png?id=tanszek%3Aoktatas%3Atdd_es_bdd

Last update: 2024/10/12 12:38 tanszek:oktatas:tdd_es_bdd https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728736688

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/06 11:45

npm test

Most a teszteknek sikeresen át kell menniük, mivel az implementáció megfelel a tesztek elvárásainak.

9. BDD stílusú tesztek

Hozzuk létre a test/userRepository.test.js-t az alábbi tartalommal.

import { expect } from 'chai';
import sinon from 'sinon';
import bcrypt from 'bcrypt';
import UserRepository from '../repositories/userRepository.js';
import UserService from '../services/userService.js';

describe('UserService', function() {
 let userService;
 let userRepositoryStub;

 beforeEach(function() {
 // Mockoljuk az adatbázis hívásokat
 userRepositoryStub = sinon.stub(UserRepository.prototype,
'findUserByEmail');
 userService = new UserService(new UserRepository());
 });

 afterEach(function() {
 // Restore minden stubolt funkciót a tesztek után
 sinon.restore();
 });

 it('should return an error if the email is already in use', async
function() {
 // Szimuláljuk, hogy az email már létezik

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:pasted:20241012-113731.png?id=tanszek%3Aoktatas%3Atdd_es_bdd

2026/02/06 11:45 7/8 1. Fókusz

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 userRepositoryStub.resolves({ email: 'existing@example.com' });

 const result = await userService.registerUser('existing@example.com',
'password123');

 expect(result.success).to.be.false;
 expect(result.message).to.equal('Email already in use');
 });

 it('should hash the password and register the user if the email is not in
use', async function() {
 // Szimuláljuk, hogy az email nem létezik
 userRepositoryStub.resolves(null);

 // Mockoljuk a bcrypt hash funkciót
 const bcryptStub = sinon.stub(bcrypt,
'hash').resolves('hashedPassword');

 const result = await userService.registerUser('newuser@example.com',
'plainPassword');

 // Ellenőrizzük, hogy a bcrypt hash funkciót hívták
 expect(bcryptStub.calledOnce).to.be.true;
 expect(bcryptStub.calledWith('plainPassword')).to.be.true;
 expect(result.success).to.be.true;
 expect(result.message).to.equal('User registered successfully');
 });

 it('should not call bcrypt hash if the email already exists', async
function() {
 // Szimuláljuk, hogy az email már létezik
 userRepositoryStub.resolves({ email: 'existing@example.com' });

 const bcryptStub = sinon.stub(bcrypt, 'hash');

 const result = await userService.registerUser('existing@example.com',
'plainPassword');

 // Ellenőrizzük, hogy a bcrypt hash nem lett meghívva
 expect(bcryptStub.called).to.be.false;
 expect(result.success).to.be.false;
 expect(result.message).to.equal('Email already in use');
 });
});

A teszt futtatás természetesen hibát ad.

Hozzuk létre az services/userService.js implementációt az alábbiak szerint:

Last update: 2024/10/12 12:38 tanszek:oktatas:tdd_es_bdd https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728736688

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/06 11:45

import bcrypt from 'bcrypt';

class UserService {
 constructor(userRepository) {
 this.userRepository = userRepository;
 }

 async registerUser(email, password) {
 const existingUser = await
this.userRepository.findUserByEmail(email);
 if (existingUser) {
 return { success: false, message: 'Email already in use' };
 }

 const hashedPassword = await bcrypt.hash(password, 10);
 const newUser = { email, password: hashedPassword };
 await this.userRepository.saveUser(newUser);

 return { success: true, message: 'User registered successfully' };
 }
}

export default UserService; // CommonJS helyett exportáljuk ESM
szintaxissal

</sxh>

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of
Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728736688

Last update: 2024/10/12 12:38

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:tdd_es_bdd?rev=1728736688

	[1. Fókusz]
	[1. Fókusz]
	1. Fókusz
	2. Szint
	3. Szemléletmód
	4. Nyelvezet

	Példa
	1. Projekt inicializálása
	2. Függőségek telepítése
	3. Mappastruktúra létrehozása
	4. Mocha konfigurálása
	5. Tesztek írása (TDD módszerrel)
	6. Tesztek futtatása
	7. Implementáció megírása
	8. Tesztek újrafuttatása
	9. BDD stílusú tesztek

