

Breaking RSA

The weak point of the RSA algorithm lies in the key generation: specifically, the difficulty of factoring $\langle N \rangle$ into its prime components. This factorisation is only possible through trial and error, and the algorithm remains secure until someone discovers a heuristic method to do it efficiently.

You wouldn't believe how tricky it is to find $\langle p \rangle$ and $\langle q \rangle$ when $\langle N = 77 \rangle$. Once you've figured it out, think about how you did it. What was the process? How did you come up with the solution?

The RSA Labs used to offer \$200,000 for the factorization of 2048-bit numbers. However, they removed the prize because more recent research has shown that the method can be broken if the primes $\langle p \rangle$ and $\langle q \rangle$ have a special relationship.

The RSA Labs previously offered a \$100,000 prize to anyone who could submit the prime factors of the following integer $\langle N \rangle$, that is, the two primes whose product is $\langle N \rangle$:

```
N = p x q = 25195908475657893494027183240048398571429282126204
03202777713783604366202070759555626401852588078440
69182906412495150821892985591491761845028084891200
72844992687392807287776735971418347270261896375014
97182469116507761337985909570009733045974880842840
17974291006424586918171951187461215151726546322822
16869987549182422433637259085141865462043576798423
38718477444792073993423658482382428119816381501067
48104516603773060562016196762561338441436038339044
14952634432190114657544454178424020924616515723350
77870774981712577246796292638635637328991215483143
81678998850404453640235273819513786365643912120103
97122822120720357
```

You can sense how difficult this task is: we are dealing with 617 digits, and unfortunately, the last digit is not even.

Example: Breaking RSA if we find $\langle p \rangle$ and $\langle q \rangle$

Step 1: Given Data

Suppose we know the **public key** $\langle (e, N) \rangle$:

- Public exponent $\langle e = 17 \rangle$
- Modulus $\langle N = 55 \rangle$

To break the RSA encryption, we need to find the **private key** $\langle d \rangle$. This requires us to factor $\langle N \rangle$ into its prime factors $\langle p \rangle$ and $\langle q \rangle$.

Step 2: Factor $\langle N \rangle$ We need to factor $\langle N = 55 \rangle$:

- $\langle p = 5 \rangle$
- $\langle q = 11 \rangle$

These are the two prime factors of $\langle N \rangle$.

Step 3: Calculate $\langle \phi(N) \rangle$ (Euler's Totient Function)

Once we have $\langle p \rangle$ and $\langle q \rangle$, we can compute $\langle \phi(N) \rangle$, which is required to compute the private key $\langle d \rangle$.

$$\langle \phi(N) = (p - 1) \times (q - 1) \rangle \quad \langle \phi(55) = (5 - 1) \times (11 - 1) = 4 \times 10 = 40 \rangle$$

Step 4: Find the Private Key $\langle d \rangle$

The private key $\langle d \rangle$ is the modular inverse of $\langle e \bmod \phi(N) \rangle$, which satisfies the equation:

$$\langle d \times e \equiv 1 \bmod \phi(N) \rangle$$

We need to find $\langle d \rangle$ such that:

$$\langle d \times 17 \equiv 1 \bmod 40 \rangle$$

Using the extended Euclidean algorithm, we find that:

$$\langle d = 33 \rangle$$

So the **private key** is $\langle d = 33 \rangle$.

Step 5: Decrypt the Ciphertext

Now that we have $\langle d \rangle$, we can decrypt the ciphertext. Suppose the ciphertext is $\langle C = 18 \rangle$.

To decrypt, we use the formula:

$$\langle m = C^d \bmod N \rangle \quad \langle m = 18^{33} \bmod 55 \rangle$$

To compute this efficiently, we can use modular exponentiation:

$$\langle 18^{33} \bmod 55 = 2 \rangle$$

So, the original **message** $\langle m = 2 \rangle$.

Summary:

- We started with the public key $\langle (e = 17, N = 55) \rangle$ and a ciphertext $\langle C = 18 \rangle$.
- After factoring $\langle N \rangle$ into $\langle p = 5 \rangle$ and $\langle q = 11 \rangle$, we calculated $\langle \phi(N) = 40 \rangle$ and found the private key $\langle d = 33 \rangle$.
- Using $\langle d \rangle$, we decrypted the ciphertext $\langle C = 18 \rangle$ to recover the original message $\langle m = 2 \rangle$.

This example illustrates how RSA encryption can be broken if someone manages to factor $\text{\textbackslash(N \textbackslash)}$ into its prime factors $\text{\textbackslash(p \textbackslash)}$ and $\text{\textbackslash(q \textbackslash)}$.

From:

<https://edu.iit.uni-miskolc.hu/> - **Institute of Information Science - University of Miskolc**

Permanent link:

https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:breaking_rsa?rev=1728313940

Last update: **2024/10/07 15:12**

