tanszek:oktatas:techcomm:floating-point_representation
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| tanszek:oktatas:techcomm:floating-point_representation [2024/10/06 17:33] – [Single-Precision (32-bit) Example] knehez | tanszek:oktatas:techcomm:floating-point_representation [2025/10/14 16:43] (current) – [Special Values in Floating-Point Representation] knehez | ||
|---|---|---|---|
| Line 13: | Line 13: | ||
| The formula: | The formula: | ||
| - | $$ \text{Value} = (-1)^S \times 1.M \times 2^{(E - \text{Bias})} $$ | + | $$ \text{value} = (-1)^S \times 1.M \times 2^{(E - \text{Bias})} $$ |
| where **Bias** is 127 for single-precision (32-bit). | where **Bias** is 127 for single-precision (32-bit). | ||
| Line 53: | Line 53: | ||
| | -Infinity| 1 | 11111111 | 00000000000000000000000 | Represents negative infinity | | | -Infinity| 1 | 11111111 | 00000000000000000000000 | Represents negative infinity | | ||
| | NaN | 0 or 1 | 11111111 | Non-zero value | Represents "Not a Number", | | NaN | 0 or 1 | 11111111 | Non-zero value | Represents "Not a Number", | ||
| + | |||
| + | Try them out here: https:// | ||
tanszek/oktatas/techcomm/floating-point_representation.1728236031.txt.gz · Last modified: 2024/10/06 17:33 by knehez
