User Tools

Site Tools


tanszek:oktatas:techcomm:formulas_for_mathematical_exercises

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
tanszek:oktatas:techcomm:formulas_for_mathematical_exercises [2024/09/09 11:16] – [Table] kissatanszek:oktatas:techcomm:formulas_for_mathematical_exercises [2024/10/15 18:47] (current) – [Information Theory] kissa
Line 17: Line 17:
 | $$H(X)$$     | Entropy, which measures the average amount of information (or uncertainty) in a random variable X.  | $$H(X) = -\sum_{x \in X} P(x) \log_2 P(x) = \sum_{x \in X} P(x) \log_2 \frac{1}{P(x)}  \text{ [bits]}$$                         | | $$H(X)$$     | Entropy, which measures the average amount of information (or uncertainty) in a random variable X.  | $$H(X) = -\sum_{x \in X} P(x) \log_2 P(x) = \sum_{x \in X} P(x) \log_2 \frac{1}{P(x)}  \text{ [bits]}$$                         |
 | $$H_{max}$$  | Maximum possible entropy (when all outcomes are equally likely).                                    | $$H_{\text{max}} = \log_2 |\mathcal{X}|$$ $$|\mathcal{X}| \text{ is the number of possible outcomes in the set } \mathcal{X}$$  | | $$H_{max}$$  | Maximum possible entropy (when all outcomes are equally likely).                                    | $$H_{\text{max}} = \log_2 |\mathcal{X}|$$ $$|\mathcal{X}| \text{ is the number of possible outcomes in the set } \mathcal{X}$$  |
-| $$R(X)$$     | Redundancy, which measures the portion of duplicative information within a message.                 $$R(X) = 1 - \frac{H(X)}{\log_2 |X|}$$  In terms of maximum entropy: $$R = \frac{H_{\text{max}} - H}{H_{\text{max}}}$$          |+| $$R(X)$$     | Redundancy, which measures the portion of duplicative information within a message.                 | $$R = \frac{H_{\text{max}} - H}{H_{\text{max}}}$$          |
 ==== Combinatorics ==== ==== Combinatorics ====
  
tanszek/oktatas/techcomm/formulas_for_mathematical_exercises.1725880608.txt.gz · Last modified: 2024/09/09 11:16 by kissa