

Cheatsheet for Math Exercises

Probability and Conditional Probability

Notation	Value	Formula
$\$P(A)\$$	Probability of event A occurring.	$\$P(A) = \frac{\text{Number of favorable outcomes for } A}{\text{Total number of possible outcomes}}\$$
$\$P(A \mid B)\$$	Conditional probability of event A occurring, given that event B has occurred.	$\$P(A \mid B) = \frac{P(A \cap B)}{P(B)}\$$
$\$P(A \cap B)\$$	Probability of both events A and B occurring.	In general: $\$P(A \cap B) = P(A) \cdot P(B \mid A)\$$ If A and B are independent events, then: $\$P(A \cap B) = P(A) \cdot P(B)\$$
$\$P(A \cup B)\$$	Probability that event A or event B (or both) occur.	$\$P(A \cup B) = P(A) + P(B) - P(A \cap B)\$$

Information Theory

Notation	Value	Formula
$\$I(A)\$$	Information content or self-information of an event A.	$\$I(A) = -\log_2 P(A) \text{ [bits]}\$$
$\$H(X)\$$	Entropy, which measures the average amount of information (or uncertainty) in a random variable X.	$\$H(X) = -\sum_{x \in X} P(x) \log_2 P(x) \text{ [bits]}\$$
$\$H_{\max}\$$	Maximum possible entropy (when all outcomes are equally likely).	$\$H_{\max} = \log_2 \mathcal{X} \$$ $\$ \mathcal{X} \text{ is the number of possible outcomes in the set } \mathcal{X}\$$
$\$R(X)\$$	Redundancy, which measures the portion of duplicative information within a message.	$\$R(X) = 1 - \frac{H(X)}{\log_2 \mathcal{X} }\$$ In terms of maximum entropy: $\$R = \frac{H_{\max} - H}{H_{\max}}\$$

Combinatorics

From:
<https://edu.iit.uni-miskolc.hu/> - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:formulas_for_mathematical_exercises?rev=1725625640

Last update: 2024/09/06 12:27

